
PURSER

Volume 3:

Appendix 9.1

Ground Investigation & Geotechnical Report and Waste Characterisation Assessment

RECEIVED. O2173/2028

•

Project No. 25517

October 2024

M7 Business Park Naas Co. Kildare Ireland

T: +353 (45) 846176 E: info@igsl.ie W: www.igsl.ie

		DOCUI	MENT ISSUE R	EGISTER	P.C.	
Distribution	Report Status	Revision	Date Issued	Author	Reviewer	
DOBA	PDF by email	0	17.10.2024	P. Quigley BEng CEng MIEI MICE FGS RoGEP Adviser	D, Green BAI CEng MIEI FGS	2025
DOBA	PDF by email	1	24.10.2024	P. Quigley	D. Green	

DOCUMENT ISSUE REGISTER

TABLE OF CONTENTS

Foreword

- 1. Introduction
- 2. Fieldworks
 - 2.1 General
 - 2.2 Trial Pits
 - **2.3** Cable Percussive Boreholes
 - 2.4 Rotary Drillholes
 - 2.5 Plate Load Tests
 - 2.6 Soakaway Tests
 - 2.7 Groundwater Monitoring
 - 2.8 Geophysical Survey
 - 2.9 Surveying of Exploratory Locations
- 3. Laboratory Testing
- 4. Ground Conditions & Groundwater
 - 4.1 Ground Profile
 - 4.2 Superficial Deposits
 - 4.3 Bedrock
 - 4.4 Groundwater & Infiltration
- 5. Ground Assessment & Engineering Recommendations
 - 5.1 General
 - 5.2 Foundation Solutions
 - 5.3 Pavement Construction
 - 5.4 Slopes / Batters
 - 5.5 Groundwater
 - 5.6 Buried Concrete
 - 5.7 Further Investigations

References

FIGURES

Figure 1	- Site location & IGSL exploratory locations
Figure 2	 Quaternary geology map for the area
Figure 3	 Images showing glacial soils in trial pits
Figure 4	- Particle Size Distribution Envelope
Figure 5	- Atterberg Limit plot
Figure 6	 SPT N-Value v Depth plot
Figure 7	 Bedrock geology map for the area
Figure 8	- Images showing core recovery in rotary holes
Figure 9	- Image of geophysical survey ground model

TABLES

- Table 1 - Summary details of rotary drillholes - Summary of groundwater levels in rotary hole standpipes - Summary of plate load tests Table 2
- Table 3

APPENDICES

Appendix 1	- Trial Pit Records & Photographs
Appendix 2	- Cable Percussive Borehole Records
Appendix 3	- Rotary Drillhole Records & Photographs
Appendix 4	- Plate Load Test Records
Appendix 5	- Soakaway Test Records
Appendix 6	- Groundwater Monitoring & Data Logger Records
Appendix 7	- Geophysical Survey Report
Appendix 8	- Geotechnical Laboratory Test Records (Soils)
Appendix 9	- Geotechnical Laboratory Test Records (Rock Cores)
Appendix 10	- Environmental & Chemical Laboratory Test Records
Appendix 11	- Waste Classification Report (O'Callaghan Moran)
Appendix 12	- Exploratory Hole Location Plan

FOREWORD

The following conditions and notes on the geotechnical site investigation procedures should be read in conjunction with this report.

Standards

The ground investigation works for this project have been carried out by IGSL in accordance with Eurocode 7 - Part 2: Ground Investigation & Testing (EN 1997-2:2007). This has been used together with complementary documents such as BS 5930 (2015) and BS 1377 (Parts 1 to 9) and the following European Norms:

- EN 1997-2 Eurocode 7: 2007 Geotechnical Design Part 2: Ground Investigation & Testing
- EN ISO 22475-1:2006 Geotechnical Investigation and Sampling Sampling Methods & Groundwater Measurements
- EN ISO 14688-1:2002 Geotechnical Investigation and Testing Identification and Classification of Soil, Part 1: Identification and Description
- EN ISO 14688-2:2004 Geotechnical Investigation and Testing Identification and Classification of Soil, Part 2: Classification Principles
- EN ISO 14689-1:2004 Geotechnical Investigation and Testing Identification & Classification of Rock, Part 1: Identification & Description

Reporting

No responsibility can be held by IGSL Ltd for ground conditions between exploratory hole locations. The engineering logs provide ground profiles and configuration of strata relevant to the investigation depths achieved and caution should be taken when extrapolating between exploratory points. No liability is accepted for ground conditions extraneous to the investigation points. Unless specifically stated, no account has been taken of possible subsidence due to mineral extraction, mining works or karstification below or close to the site.

This report has been prepared for Donnachadh O'Brien & Associates (DOBA) Consulting Engineers and the information should not be used without their prior written permission. IGSL Ltd accepts no responsibility or liability for this document being used other than for the purposes for which it was intended.

Boring Procedures

Where required, 'shell and auger' or cable percussive boring technique is employed as defined by Section 6.3 of IS EN ISO 22475-1:2006. The boring operations, sampling and in-situ testing meet with the recommendations set out in IS EN 1997-2:2007 and BS 1377:1990 and EN ISO 22476-3:2005. The shell and auger boring technique allows for continuous sampling in clay and silt above the water table and sand and gravel below the water table (Table 2 of IS EN ISO 22475-1:2006).

It is highlighted that some disturbance and variation is unavoidable in particular ground (e.g. blowing sands, gravel / cobble dominant glacial deposits etc). Attention is drawn to this condition, whenever it is suspected. Where cobbles and boulders are recorded, no conclusion should be drawn concerning the size, presence, lithological nature, or numbers per unit volume of ground.

In-Situ Testing

Where required, Standard Penetration Tests (SPT's) are conducted strictly in accordance with Section 4.6 of IS EN 1997-2:2007. The SPT equipment (hammer energy test) has been calibrated in accordance with EN ISO 22476-3:2005 and the Energy Ratio (E_r). A calibration certificate is available upon request. The E_r is defined as the ratio of the actual energy E_{meas} (measured energy during calibration) delivered to the drive weight assembly into the drive rod below the anvil, to the theoretical energy (E_{theor}) as calculated from the drive weight assembly. The measured number of blows (N) reported on the engineering logs are uncorrected. In sands, the energy losses due to rod

length and the effect of the overburden pressure should be taken into account (see IS EN ISO 22476-3:2005).

Soil Sampling

Three categories of sampling methods are outlined in EN ISO 22475-1:2006. The categories are referenced A, B and C for any given ground conditions and are shown in Tables 1 and 2 of EN ISO 22475-1:2006. Reference should be made to EN 1997-2:2002 for guidelines on sample class and quality for strength and compressibility testing. Samples of quality classes 1 or 2 can only be obtained by using Category A sampling methods.

Where appropriate, Class 1 thin wall undisturbed tube samples (UT100) are obtained in fine grained soils (not heterogeneous tills) and meet the requirements of EN 1997-2:2002 and EN ISO 22475-1:2006. Soil samples for laboratory tests are divided into five classes with respect to the soil properties that are assumed to remain unchanged during sampling, handling transport and storage. The minimum sample quality required for testing purposes to Eurocode 7 compatibility (EN 1997-2:2002) is shown in Table A.

EN 1997 Clause	Test	Minimum Sample Quality Class
5.5.3	Water Content	3
5.5.4	Bulk Density	2
5.5.5	Particle Density	N/S
5.5.6	Particle Size Analysis	N/S
5.5.7	Consistency Limits	4
5.5.8	Density Index	N/S
5.5.9	Soil Dispersivity	N/S
5.5.10	Frost Susceptibility	N/S
5.6.2	Organic Content	4
5.6.3	Carbonate Content	3
5.6.4	Sulphate Content	3
5.6.5	рН	3
5.6.6	Chloride Content	3
5.7	Strength Index	1
5.8	Strength Tests	1
5.9	Compressibility Tests	1
5.10	Compaction Tests	N/S
5.11	Permeability	2

Table A – Details of Sample Quality Requirements

N/S – not stated. Presume a representative sample of appropriate size.

Samples recovered from trial pits or trenches meet the requirements of IS EN ISO 22475-1. It is highlighted that unforeseen circumstances such as variations in geological strata may lead to lower quality sample classes being obtained.

Groundwater

The depth of entry of any influx of groundwater is recorded during the course of boring operations. However, the normal rate of boring does not usually permit the recording of an equilibrium level for any one water strike. Where possible, drilling is suspended for a period of twenty minutes to monitor the subsequent rise in water level. Groundwater conditions observed in the borings or pits are those appertaining to the period of investigation. It should be noted however, that groundwater levels are subject to diurnal, seasonal and climatic variations and can also be affected by drainage conditions, tidal variations etc.

Engineering Logging

Soil and rock identification has been based on the examination of the samples recovered and conforms with IS EN ISO 14688-1:2018 and IS EN ISO 14689-1:2018. Rock weathering classification conforms to IS EN ISO 14689-1:2003 while discontinuities (bedding planes, joints, cleavages, faults etc) are classified in accordance with 4.3.3 of IS EN ISO 14689-1:2003. Rock mechanical indices (TCR, SCR, RQD) are defined in accordance with IS EN ISO 22475-1:2006

Where peat has been encountered, samples have been logged in accordance with the Von Post-Classification (ref. Von Post, L. 1992. Sveriges Gologiska Undersoknings torvinventering och nogra av dess hittils vunna resultat (SGU peat inventory and some preliminary results) Svenska Mosskulturforeningens Tidskrift, Jonkoping, Swedden, 36, 1-37 and Hobbs N. B. Mire morphology and the properties of some British and foreign peats. QJEG, Vol. 19, 1986.

Retention of Samples

After satisfactory completion of all the scheduled laboratory tests on any sample, the remaining material will be discarded. Unless a period of retention of samples is agreed, it is our normal practice to discard all soil samples one month after submission of our final report.

1. INTRODUCTION

At the instruction of Donnachadh O'Brien & Associates (DOBA) Consulting Engineers, IGSL has undertaken a ground investigation for a proposed bioenergy facility at Lisheen, Co Tipperary. It is understood that the scheme will include the construction of a tank farm (primary and secondary digesters), feedstock clamps, compost storage building, gas filling unit with external paved areas and associated infrastructure. The proposed development is at the former Lisheen Mine and the former Lisheen Mine and the former for the underground access ramp / decline was uncovered during the investigations.

25517 - Lisheen Mine

Exploratory Hole Location Plangure 1 - Site Location & IGSL Exploratory Locations

Image © 2024 Maxar Technologies Image © 2024 Maxar Technologies

The ground investigations comprised trial pits, cable percussive boreholes, rotary core drillholes, plate load tests, soakaway tests and a geophysical survey. The investigations were executed in accordance with BS 5930, Code of Practice for Site Investigations (2015+A1:2020) and EN 1997-2 Eurocode 7 Part 2 Ground Investigation & Testing. The fieldworks were supervised by an IGSL engineering geologist.

Geotechnical soils laboratory testing has been carried out on selected trial pit and borehole samples while point load strength index tests were conducted on rock core specimens. Environmental and chemical testing (BRE SD 1) was also undertaken on selected samples. The 'as-built' co-ordinates and ground levels are shown on the exploratory hole logs with locations plotted on the exploratory hole plan (Appendix 12).

This report presents the findings from the field and laboratory testing. An evaluation of the ground and groundwater conditions and engineering properties ('ground assessment') is presented. Recommendations are provided on foundation solutions, pavement construction, slopes / batters, groundwater and protection of buried concrete. A waste classification report has been prepared by O'Callaghan Moran and is included in Appendix 11.

2. FIELDWORKS

2.1 General

The ground investigations were carried out during July and August 2024 and comprised the TED: 02/17/202× following:

- Trial pits (11 No.)
- Cable percussive boreholes (8 No.)
- Rotary core drillholes (8 No.)
- Plate load tests (5 No.)
- Soakaway tests (5 No.)
- Geophysical surveying
- Groundwater monitoring& installation of data loggers 0
- Surveying of exploratory hole locations 0

2.2 Trial Pits

Trial pitting was performed using a 6T tracked excavator. The trial pits are denoted TP 01 to 11 and were logged and sampled by an IGSL engineering geologist in accordance with BS 5930 (2015+A1:2020) and EN 14688-1:2017. The pits extended to depths of between 1.5 and 2.8m with termination due to obstructions or suspected bedrock / rockhead. Bulk disturbed samples (typically 20 to 25 kg) were taken as the pits progressed. The bulk samples were placed in heavy-duty polyethylene bags and sealed before being transported to Naas for laboratory testing.

The trial pits were backfilled with the as-dug arisings and reinstated to the satisfaction of IGSL's site representative. The trial pit logs and photos are presented in Appendix 1 and include descriptions of the soils encountered, groundwater conditions and stability of the pit sidewalls.

2.3 Cable Percussive Boreholes

Cable percussive boring (200mm diameter) was undertaken at eight locations using a Dando 2000 rig. The boreholes extended to depths of between 0.70m (BH 5) and 5.10m (BH 7). At each location, boring commenced through a hand-dug service inspection pit. Throughout boring, disturbed bulk samples were recovered at 1m intervals or change of strata during boring and these are denoted 'B' on the engineering logs. The boreholes were backfilled with the arisings and capped with bentonite pellets.

Standard Penetration Tests (SPT's) were performed in the boreholes and given the nature of the soils, a solid cone was used. It is noted that the SPT N-Values reported are the number of blows for 300mm increment penetration (e.g. BH01 at 1.0m where N=23). These exclude the seating blow values, which represent the initial 150mm depth of penetration. Where partial penetration was achieved during testing, the number of blows is shown for the actual penetration depth achieved (e.g. BH01 at 3m where N=25/75mm). In accordance with Eurocode 7, the SPT hammer has been calibrated and the energy ratio (Er) value is incorporated on the engineering logs. It is highlighted that the SPT N-Values reported on the engineering logs are uncorrected for energy ratio. The hammer calibration certificate is presented in Appendix 2 with the logs.

Descriptions of the soils encountered, in-situ tests undertaken and samples recovered are presented on the borehole records in Appendix 2. Details of groundwater strikes and hard strata boring (i.e. chiselling) are also presented on the aforementioned records.

2.4 Rotary Core Drillholes

Rotary core drilling was carried out at eight locations (denoted RC 01 to 08) using a Beretta T44 top drive rig. Symmetrex / odex drilling was utilised within the overlying superficial deposits with coring techniques used in the underlying bedrock. Drillholes were taken to depths ranging from 10.15m in RC 04 to 18.55m in RC06. SPT's were conducted in the superficial deposits and the arisings examined by the driller to assess soil composition.

The rotary drilling in bedrock produced 78mm diameter cores and they were placed in 3m capacity timber boxes and logged by an IGSL engineering geologist. This included photography of the cores with a digital camera. Where rock core was recovered, a graphic fracture log is also presented alongside the mechanical indices. This illustrates the fracture state of the rock cores and allows easy identification of highly fractured / non-intact zones and discontinuity spacings. It should be noted that no correction for dip of the joints has been made and that the spacings shown are successive joint / core intersections within the core.

Groundwater monitoring standpipes were installed in five of the eight rotary drillholes and included a 50mm diameter uPVC proprietary pipe, pea gravel response zone and bentonite grout seal. Protective upright covers were concreted in place. The core log records are presented in Appendix 3 and includes engineering geological descriptions, details of the bedding / discontinuities and mechanical indices (TCR, SCR and RQD's) for each core run. Core photographs are also presented in Appendix 3 and these illustrate the structure and fracture state of the bedrock.

2.5 Plate Load Tests

The plate load tests were conducted on the shallow or near surface materials (0.5m below existing ground level) and undertaken to evaluate the modulus of sub-grade reaction (Ks) and derive equivalent CBR values in accordance with HD26-26/10. A 450mm diameter plate was used with kentledge provided by a 6T excavator. Two load cycle tests were performed and the load / settlement plots, Ks and equivalent CBR values are presented in Appendix 4.

2.6 Soakaway Tests

Infiltration tests were performed to assess the suitability of the sub-soils for dispersion of storm water through a soakaway system. The infiltration tests were undertaken in accordance with BRE Digest 365 'Soakaway Design'. To obtain a measure of the infiltration rate of the sub-soils, water was poured into each test pit, with records taken of the fall in water level against time. The infiltration rate is the volume of water dispersed per unit of exposed area per unit of time, and is generally expressed as metres / minute or metres / second. Designs are based on the slowest infiltration rate, which is generally calculated from the final soak cycle. The soakaway test results are presented in Appendix 5.

2.7 Groundwater Monitoring

Groundwater levels in the rotary drillhole standpipes were monitored and results are enclosed in Appendix 6. Data loggers were subsequently inserted in the standpipes on 16th October 2024 to provide continuous groundwater levels. The groundwater levels and early data logger results for October 2024 are incorporated in Appendix 6.

2.8 Geophysical Survey

A geophysical survey was carried out by Minerex Geophysics Ltd. A number of techniques were employed including EM31 ground conductivity, 2D resistivity (ERT) and seismic refraction. Details of the methodologies used, test results and findings are incorporated in the Minerex report in Appendix 7.

2.9 Surveying of Exploratory Hole Locations

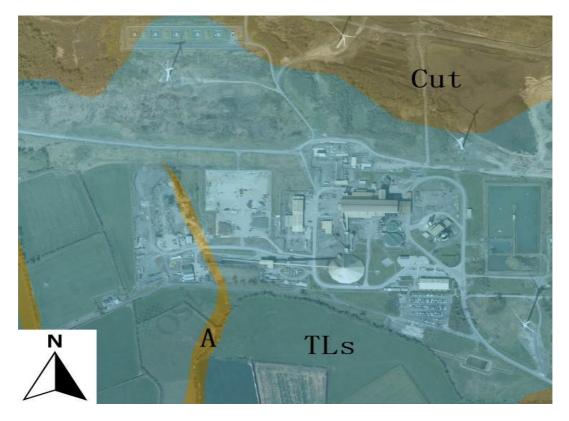
Following completion of the exploratory works, surveying was carried out using GPS techniques. Co-ordinates (x, y) were measured to Irish National Grid and ground levels (z) established to Malin Head. The co-ordinates and ground levels are shown on the exploratory hole logs with the locations plotted on the exploratory hole plan in Appendix 12.

3. LABORATORY TESTING

Geotechnical laboratory testing was carried out on selected trial pit and borefice samples. The testing included moisture content, Atterberg Limits (Liquid / Plastic Limits) and sieve analysis (PSD) and the results are presented in Appendix 8.

Point load strength index tests were performed on rock core specimens and the results are enclosed in Appendix 9.

Environmental WAC and chemical analysis tests (BRE SD 1 suite) were conducted on selected samples and the results are incorporated in Appendix 10.


4. GROUND CONDITIONS & GROUNDWATER 4.1 Ground Profile

The ground profile at the Lisheen site can be categorized as follows:

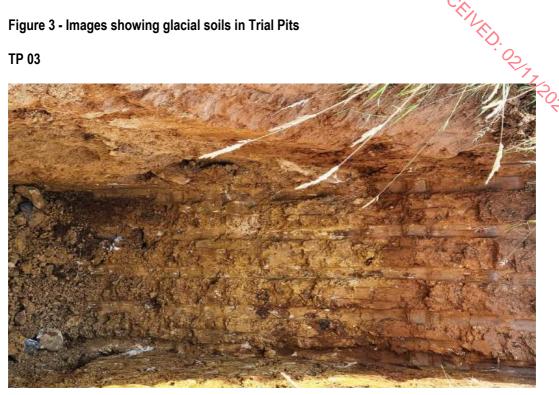
- Made Ground / Fill \cap
- RECEIVED. OR Glacial Till consisting of grey and brown sandy very gravelly CLAY with low to high cobble 0 and low boulder content and clayey gravelly SAND with cobbles and boulders
- Limestone bedrock (dolomitized or argillaceous / muddy limestone) 0

The quaternary geological map for the area is shown in Figure 2. The indigenous deposits comprise heterogeneous glacial and fluvio-glacial soils (TLs) consisting of till derived from limestone with thin or narrow veins of Alluvium (A). It is noted that the area to be developed was formerly part of the Lisheen underground mine and the access ramp portal was identified during the ground investigations.

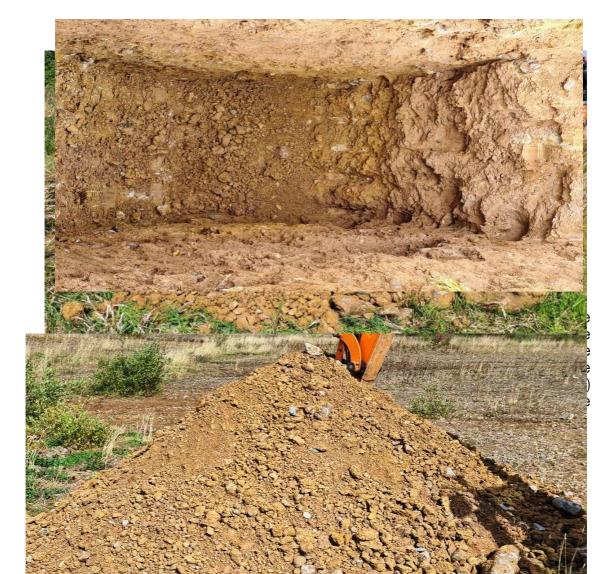
Figure 2 - Quaternary Geology Map for the Area

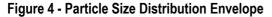
4.2 Superficial Deposits

Made Ground / Fill (Anthropogenic Deposits)


The trial pits encountered pockets or zones of MADE GROUND extending to depths of up to 1.10m (TP 6). The material is heterogeneous and dominated by re-worked sandy gravelly / cobbly clay with organics or roots. The matrix is described as firm and the material is thought to have originated from excavations associated with the mine development.

Glacial Deposits


The glacially derived soils are heterogeneous and referred to as glacial till. The material is characterized by grey brown and reddish brown sandy gravelly CLAY with low to high cobble content and clayey / silty gravelly SAND with cobbles and boulders (proportions vary greatly). Lenses or horizons of sandy GRAVEL or gravelly SAND occur within the glacial deposits.


Figure 3 - Images showing glacial soils in Trial Pits

TP 03

TP 08

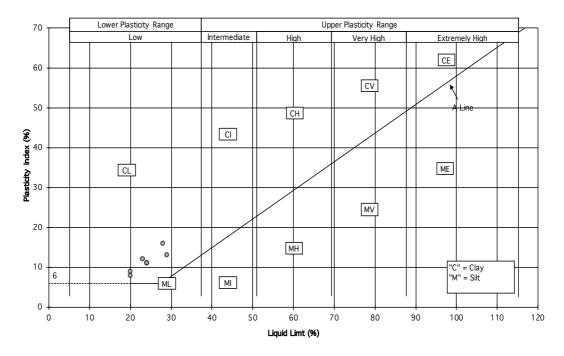
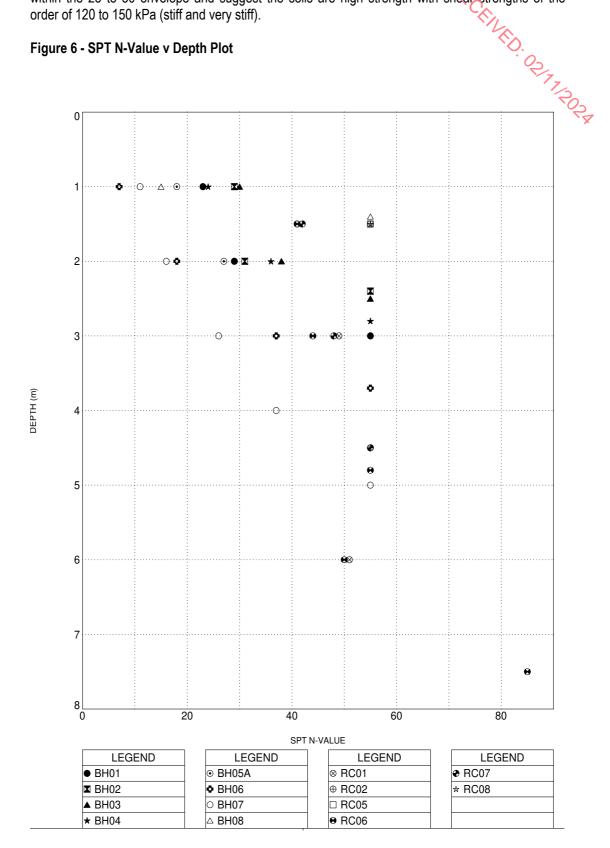




Figure 5 - Atterberg Limit Plot (Casagrande Chart)

Standard Penetration Tests (SPT's) were conducted in both the cable percussive boreholes and IGSL rotary drillholes to establish stiffness or shear strength. An SPT data plot has been prepared using both data sets and is presented in Figure 6. Using the Stroud & Butler correlation between SPT N-Value and undrained shear strength (where $Cu \approx 4$ to 6N) the upper indigenous soils range from low strength (20 to 40 kPa) to medium strength (40 to 75 kPa) and high strength (75 to 150 kPa) as defined in Table 6 of EN 14688-2:2017. The SPT's show quite a data scatter with an

increase in strength apparent from approximately 3m, thereafter the majority of the N-Values fall within the 25 to 50 envelope and suggest the soils are high strength with shear strengths of the order of 120 to 150 kPa (stiff and very stiff).

4.3 Bedrock

Reference to the GSI map for the area (Figure 7, 1:100,000 Solid Geology series) shows that the site is underlain by Waulsortian Limestone (WA) which consists of dolomitized fine grained limestone. The Waulsortian Limestone formation is known to be particularly susceptible to solution (karst) weathering with open voids or clay infill common within the bedrock sequence. The Crosspatrick Formation (CS) lies to the north of the site and is characterised by cherty crimoidal , NOOL& limestone.

Figure 7 - Bedrock Geology Map for the Area

The rotary holes extended to depths of between 10.15 and 18.55m and despite the fracture state, core recovery was generally high with 100% recovery in the majority of the runs. Rockhead was proven at depths varying from approximately 1.5 to 8m. Summary details of the rotary drillhole findings are presented in Table 1.

Rotary Hole No.	Final Depth (m)	Rockhead Depth (m bgl)	Rock Core Characteristics
RC 01	12.50	6.80	Medium strong to strong light grey blue slightly dolomitized LIMESTONE, slight solution weathering present.
RC 02	10.20	2.80	Strong to very strong light blue/grey slightly dolomitized LIMESTONE, slight solution weathering.
RC 03	10.50	2.45	Strong to very strong (where intact) light blue/grey LIMESTONE locally moderately/highly weathered attributable to solution weathering from c4.5 to 9m.
RC 04	10.15	2.40	Medium string to strong light blue/grey slightly dolomitized LIMESTONE, slight solution weathering.

Table 1 - Summary of Rotary Drillholes

RC 05	12.50	2.60	Very weak to strong slightly dolomitized LIMSTONE, some solution weathering and locally heavily fractured / non-intact.	
RC 06	18.55	8.00	Moderately weak to very strong dark grey / black argillaceous / muddy LIMESTONE fresh to slightly weathered.	
RC 07	15.10	5.90	Medium strong to very strong dark grey / black argillaceous / muddy LIMESTONE, fresh to slightly weathered.	
RC 08	11.70	1.50	Moderately weak to very strong dark grey / black argillaceous / muddy LIMESTONE, fresh to slightly weathered.	22

The recovered cores consist of light grey/blue slightly dolomitized LIMESTONE with solution weathering and dark grey / black argillaceous / muddy LIMESTONE (images illustrated in Figure 8). Weathering grades vary within the sequence and the light grey / blue limestone (which belongs to the Waulsortian Formation) exhibits solution or karst weathering. The graphic fracture log illustrates non-intact or heavily fractured zones often associated with very poor core recovery (e.g. RC 5 from c7.7 to 12.5m). Iron staining and discolouration are associated with solution weathering where water movement has caused the original limestone fabric to be altered.

The discontinuity spacings range from closely spaced to medium spaced while the surfaces are typically smooth to locally rough and planar to undulose with slight iron oxide staining and clay infilling or smearing. Apertures are tight to partly open with local clay smearing and dips vary from 45 to 50° and irregular.

Figure 8 - Images Showing Core Recovery in Rotary Holes

RC 01 (7.5 to 10.5m)

RC 05 (2.6 to 5.215m)

RC 06 (4.0 to 9.83m)

RC08 (1.5 to 4.1m)

The point load strength index (PLSI) tests produced $I_s(50)$ values ranging from 0.40 to 6.4 MPa with a mean value of 3.3 MPa. Using a correlation factor (K) of 20 the PLSI strengths show the <u>intact</u> cores have average compressive strengths of the order of 60 to 70MPa. The overall PLSI data set suggests the intact core specimens vary from weak (5 to 12.5 MPa) to very strong (100 to 200 MPa).

The geophysical survey utilized a combination of techniques (EM31, 2D resistivity & seismic refraction) to assess the composition of the superficial deposits, depth to rockhead and evaluate the presence of open voids or features within the upper bedrock. The rotary drillhole records were integrated with the geophysical information to develop an interpreted ground model. Reference should be made to the geophysical survey report (Appendix 7) for full details on the findings. The geophysics modelled three layers with Layer 4 noted to represent the underground mine entrance or access ramp which was also proven in RC 7 (refer to core box 1 which shows concrete recovered from 5 to 5.9m). Layer 2 is described as variably weathered or karstified limestone with Layer 3 denoted as representing high strength (strong) competent limestone bedrock with seismic velocities >4,000 m/s.

The survey confirms the presence of karstified limestone within the dolomitized Waulsortian Formation which are characterized by zones of lower resistivity and seismic velocities, mainly occurring at the northern end of survey Line 2. A geological fault has been interpreted between the dolomitized limestone and the argillaceous / muddy limestone where the muddy / argillaceous limestone appears to be have been thrusted upwards or uplifted by the fault. Images showing interpreted x-sections are included in the geophysical report with an interpreted ground model presented in Map 3 and illustrated below in Figure 9.

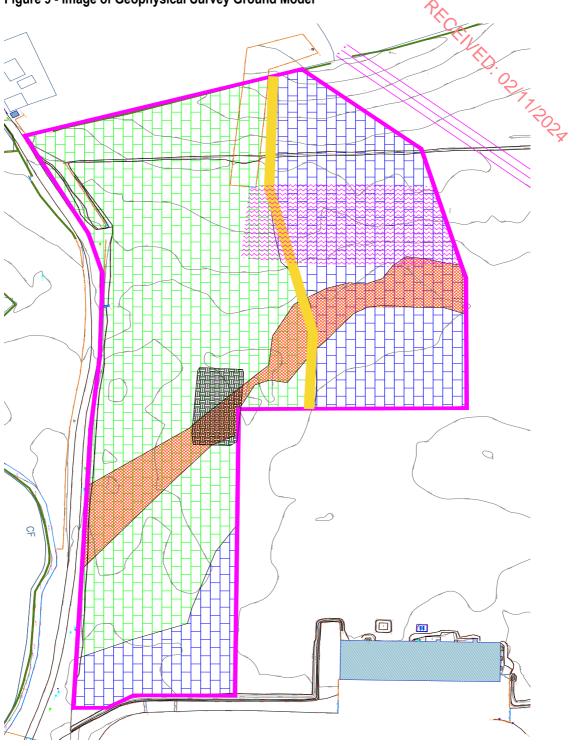


Figure 9 - Image of Geophysical Survey Ground Model

4.4 Groundwater & Infiltration

Groundwater strikes or inflows were encountered in two of the eleven trial pits (i.e. TP 2 & 9). In the cable percussive boreholes, groundwater was only met in BH 7 (3.60m) with the remainder noted as dry to termination depth. During rotary drilling, groundwater was intercepted in RC 01, 05, 06, 07 and 08 and depths ranging from 3.0 to 7.80m. Standpipes were installed in the five of the eight rotary drillholes and groundwater levels during October 2024 are shown in Table 2. The monitoring shows groundwater varying from 1.71 to 6.20m in late October 2024.

Soakaway tests were conducted to evaluate the infiltration characteristics for potential dispersion of storm water through a soakaway system. The tests demonstrated significant variability with no movement or dissipation recorded in some instances (SA02 & SA04) while the other tests determined infiltration rates (f) of 1.4 to 6.4x 10⁻⁶ m/s.

Rotary Hole No.	Ground Elevation (m OD)	Standpipe Response Zone (m)	Groundwater Levels in Standpipes (16.10.2024)	Groundwater Levels in Standpipes (23.10.2024
RC 02	129.72	1.00 to 10.20	6.22	6.20
RC 03	127.39	2.00 to 10.50	3.17	3.10
RC 05	127.71	2.60 to 12.50	3.76	3.70
RC 06	127.46	8.00 to 18.55	3.38	3.28
RC 08	126.53	1.50 to 11.70	1.37	1.71

Table 2 - Summary of Groundwater Levels in Rotary Hole Standpipes

5. GROUND ASSESSMENT & ENGINEERING RECOMMENDATIONS

5.1 General

SC. D. OP TIMORE On foot of the findings from the ground investigations, the following issues are discussed and recommendations provided:

- Foundation solutions •
- Pavement construction •
- Groundwater •
- Slopes / batters •
- Buried concrete

5.2 Foundation Solutions

The ground investigation identified a mantle of MADE GROUND across the site which is underlain by firm / stiff glacial deposits with bedrock established at depths largely ranging from approximately 1.5 to 2.8m but deepens at the north-eastern corner of the site (RC 01) to 6.8m while RC 07 identified concrete backfill at the underground mine entrance (decline / ramp). A large tank farm is proposed which will consist of four Primary Digester tanks and three Secondary Digester tanks along with storage clamps, gas filing unit, compost storage building, attenuation pond and a host of ancillary buildings or structures. A discussion on foundation options and bearing capacity for the main structures or buildings is presented below.

Primary & Secondary Digester Tanks

Given the geophysical and intrusive borehole investigation findings, expected column loads and stress distribution for the digester tanks (9m height) and most importantly the heterogeneity of the glacial soils (including re-worked till), the tank foundations could be placed on the upper bedrock using either modified / stabilized fill or imported granular fill (T0 / T1) to achieve a high strength fill.

Piles could also be considered to transfer the loadings into the upper bedrock. If soil modification and stabilization is selected, this would entail excavating the upper soils to rockhead and treating the excavated material with lime or cement binders (or a combination of both) followed by controlled compaction in layers to produce a high strength engineering fill to support the tanks and most significantly limit settlement to small magnitudes (<5mm expected if a CBR of 30% is achieved and air voids <5%). Screening of the larger constituents (75 to 100mm) would be necessary before the excavated material is placed and treated with lime or cement binders. Based on the rotary cores relevant to the tank area, the upper competent limestone bedrock should provide a safe or allowable bearing capacity of 1250 to 1500 kPa. Where pockets or zones of moderately or highly weathered limestone are uncovered these should be removed and replaced with low grade concrete or granular fill with geogrid (if they are associated with solution weathering).

If piles are selected, then odex drilled piling techniques would be advised to achieve penetration into the upper bedrock or rock mass. It is thought that either 450 or 600mm diameter CFA piles would be appropriate and the expectation is that a 450mm diameter pile with a rock socket of at least 2m in competent limestone (medium strong) should provide a safe working load (SWL) of the order of 1000kN. Higher SWL's would be possible with a 600mm diameter pile of a similar length offering a SWL of c1500 kN. However, the rotary holes subsequently showed bedrock or rockhead at varying depths and this would have to be considered in pile design. If piles prove to be cost effective, then trial piling is strongly advised to assess the constructability of the pile along with at least one static load test to validate safe working load (SWL) and settlement characteristics. This should be carried out before production piling to demonstrate the feasibility of the piling method.

A granular fill platform would be required to support piling plant. For 75 to 80T piling rigs a granular fill thickness of 650 to 700mm is envisaged and should be designed in accordance with BRE 447. T0 Struc complying with Annex E of SR21:2014+A1:2016 is recommended as unbound granular fill for the piling platform. This is to ensure that the granular fill does not present a risk for pyrite induced swelling or expansion. Following compaction of the T0 material it should achieve a minimum CBR value of 30% (re-load cycle) when tested by plate load method to BS 1377. The piling platform should be maintained to ensure a safe working surface and any softened or degraded material as a consequence of the piling operations should be removed and replenished (particularly important if piling operations are carried out during periods of heavy rainfall or winter months).

Covered Storage Building & Storage Clamps

The findings from TP's 3, 7 and 8 suggest that strip footing or pad foundations for these structures could be constructed on the indigenous glacial soils. The firm / stiff glacial till should provide a safe or allowable bearing capacity of 150 to 175 kPa and limit settlement to <15 to 20mm. Given the historical mine development works at the site, it is vital that any re-worked soils (MADE GROUND) are removed and foundations are not placed on this material. Where re-worked soils are present, they should be removed and replaced with low grade or 'lean mix' concrete.

Compost Storage Building

TP's 9 and 10 and BH 08/RC08 are pertinent to this area of the site. TP 10 encountered MADE GROUND to 0.7m with refusal on suspected bedrock. RC 08 subsequently proved rockhead at a depth of 1.5m with moderately weak to very strong argillaceous LIMESTONE confirmed. With bedrock appearing to be quite shallow at the eastern corner of the site, foundations for the Compost Storage Building could be placed on the upper bedrock.

Biogas Upgrade Building & Gas Filling Unit

TP 6 and BH03/RC03 cover this portion of the site. Rockhead was established at c2.45m in RC03 and TP 6 terminated at 2.50m in boulder obstructions or presumed bedrock. The SPT N-Values in the cable percussive borehole (BH03) demonstrate high strength glacial soils (mixture of fine and coarse glacial till) occur. It would be reasonable to assume that foundations for these structures could be placed on the stiff glacial soils at shallow depths with the indigenous till providing a safe or allowable bearing capacity of 150 to 175 kPa. Again, the potential exists for possible re-worked soils to be present and foundations (strip footings, pads or bases) should not be placed on MADE GROUND deposits.

Dirty Water & Clean Water Storage

This will involve the construction of attenuation ponds or storage facilities for the bioenergy plant. Excavation depths are unknown but the expectation is that lined ponds would be formed to store both dirty and clean water. Excavation depths of 2.5 to 3m are envisaged and based on the findings from TP 5, 8, 11, these would be within the glacial deposits and perhaps transitioning into the upper bedrock if excavations are deeper then c2.5m (trial pits refused at 1.5 to 2.7m in aforementioned trial pits).

5.3 Pavement Construction

CBR values were established by plate load test method and the results are summarised in Table 3. Inspection of the data shows CBR values at Cycle 1 (initial load) range from 2.2 to 13.8 while at Cycle 2 (re-load) the values increased to between 4.8 and 89.9%.

Plate Test Location	Test Depth (m bgl)	CBR Cycle 1 (%)	CBR Cycle 2 (%)
PT 01	0.5	2.2	7.1
PT 02	0.5	10.2	46.1
PT 03	0.5	2.7	4.8
PT 04	0.5	4.5	48.3

Table 3 - Summary Details of Plate Load Tests

	0 5	40.0		00.0
PL05	0.5	1.1.8	~	89.9
1100	0.0	10.0		00.0
				<u>^</u>

In accordance with the Design Guidance for Road Pavement (HD 25), the lower end equilibrium CBR values should be used to determine appropriate capping layer thickness for flexible pavements. Given the plate test derived CBR values, a subgrade CBR design value of 2.5 to 3% would not be unreasonable for determination of capping and sub-base pavement thickness for asphalt roads and car parking. It is highlighted that the CBR value on the indigenous soil formation would depend greatly on the effectiveness of drainage and water management. If drainage is inadequate then the sub-grade stiffness would diminish greatly and a greater thickness of capping (or the use of a starter layer) would have to be implemented.

Taking a design CBR value of c3%, then a minimum 6F capping thickness of 450mm with a subbase thickness of 200mm would be advised to support flexible road or car park pavements. However, given the sensitivity of upper glacial soils to degradation and potential for rutting ('traffickability') with rubber wheeled dump trucks, consideration should be given to using a starter layer (i.e. TII SRW Series 6B/6C granular fill). For heavily trafficked roads (especially access roads) to build the tank farm and laydown areas, approximately 500mm of Class 6A / 6B material could be used in conjunction with 300mm of 6F capping. This may appear somewhat conservative but is recommended from our experience of earthworks in silt dominant glacial till.

Where concrete pavements are required, the quality and compaction of granular fills will be even more critical to ensure that such rigid pavements do not crack or weaken under repeated trafficking or heavy vehicle movement. The use of geogrid reinforcement should be considered to strengthen or stiffen the foundation layer (e.g. Thrace TG4040S or equivalent) and consultation should be sought from geosynthetic specialists on the position and number of geogrid layers within the pavement foundation build-up.

5.4 Slopes & Batters

A slope angle of 1V to 2H (26°) is recommended for long term cut slopes or batters formed within the upper soils. For short term or temporary excavations, slopes or batters of 1V to 1.5H (33°) should be feasible. Consideration should be given to the potential for perched water to be present within the MADE GROUND and this would have significant implications for stability.

For confined excavation works (e.g. service trenches etc), the upper soils will be susceptible to instability and sidewall collapse and spalling, therefore ground support measures (e.g. trench box) are advised to ensure safe excavation works. Site operatives or personnel should not enter unsupported excavations and should be informed of the potential risks. Where site operatives or engineering staff work in close proximity to temporary slopes or batters, these should be inspected daily by a suitably experienced geotechnical engineer or engineering geologist.

In relation to retaining walls and ground retention, an angle of shearing resistence or friction (\emptyset) of 34° is recommended for determining (calculating) sliding of retaining walls or pads constructed on the indigenous fine grained (cohesive) glacial till. Large shear box tests on this type of material generally produce \emptyset values of 34 to 36° but the effects of water (softening) should be considered in design against sliding. Where reinforced concrete retaining walls are required these should be founded on firm / stiff soils (CBR value of at least 3% or Dynamic Probe N₁₀₀ values consistently >3).

5.5 Groundwater

As noted in Section 4.4, groundwater strikes or seepages were only encountered in two of the eleven trial pits. Groundwater was intercepted in one of the cable percussive boreholes during boring (BH 7) while groundwater was met in five of the eight rotary drillholes. The standpipes installed in the rotary drillhole standpipes showed water levels of 1.71 to 6.20m in late October 2024. Given the groundwater conditions observed in the trial pits and measured standing water levels

groundwater ingress is unlikely to be an issue for shallow excavations (e.g. utility trenches etc). If excavate and replace is selected for the Digester Tanks and other heavy structures then localized sump pumping is anticipated to control groundwater and surface water ingress.

5.6 Buried Concrete

The chemical analysis tests show pH values ranging from 8.6 to 8.7. The sulphate aqueous extract (SO_4) tests determined values of <0.010 g/l and categorises as BRE Design Sulphate Class DS-1. Table C2 ACEC for brownfield sites in BRE SD 1 (2005) can be used in the selection and design of concrete. If mobile groundwater conditions prevail at the site and given the pH values obtained from the testing, then ACEC class AC-1s would be expected to be appropriate for buried concrete and piles. In line with I.S. EN 206-1:2013, concrete could be manufactured to Class XA1 (Class XA1 being \geq 2000 and \leq 3000 SO₄²⁻ mg/kg).

5.7 Further Investigations

The proposed bioenegy project will entail the construction of a number of large tanks in tandem with storage buildings, gas filing units, attenuation ponds and ancillary structures. The geophysical and geotechnical investigations have identified a degree of variability in the thickness of the superficial deposits and rock mass quality, most notably the effects of karst weathering on the dolomitised limestone. Foundation options or solutions for the primary and secondary digester tanks have been discussed in Section 5.2.

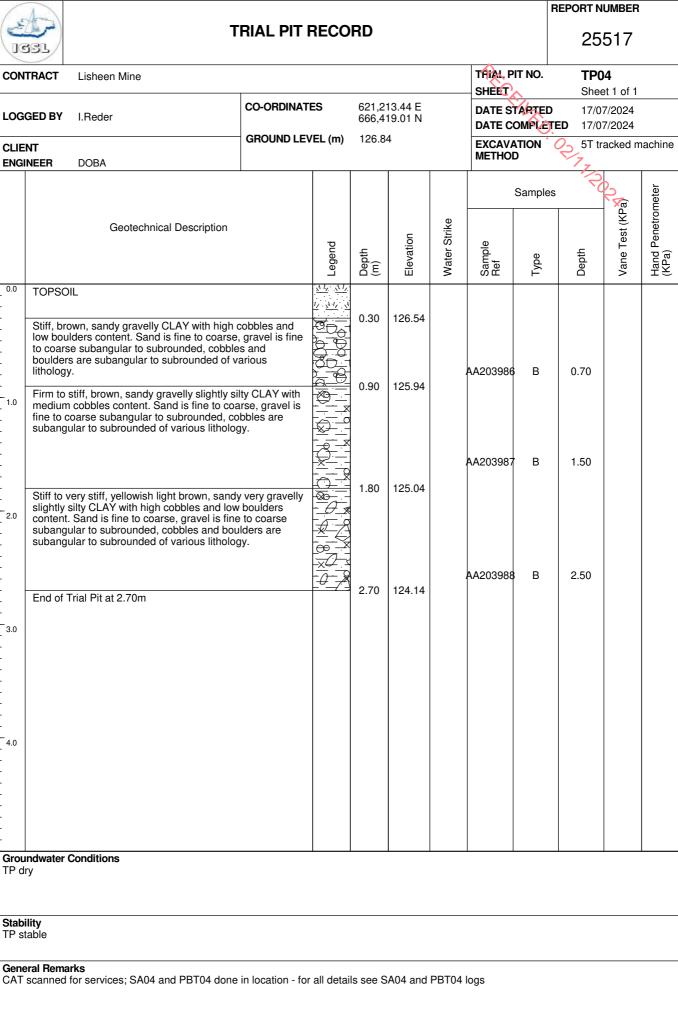
In light of the scale and size of these tanks, additional rotary holes across the tank farm footprint would be prudent to ascertain potential variations or anomalies in depth to rockhead and rock mass characteristics. In addition to rotary drilholes, further trial pits or trenches (linear) could be considered to validate the presence or absence of re-worked soils. Once the final layout has been completed, positioning of additional exploratory pounts could be undertaken and a scope of works developed.

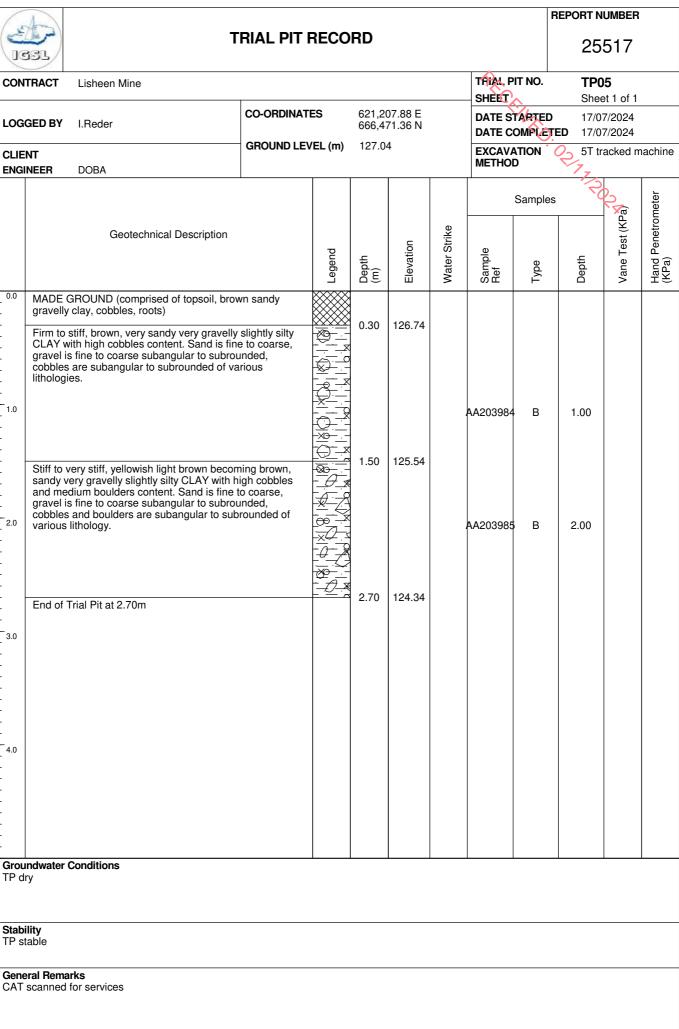
If soil modification / stabilization is to be considered feasible and cost effective, then a programme of earthworks laboratory testing and trial mix tests are recommended. The samples could be generated by further trial pits at specific areas and testing should include MCV, CBR and Proctor compaction at both natural moisture and following mixing and curing with lime, cement or a combination of both.

References

- ED. OP 17 100 B 1. BS 5930 (2015+A1:2020) Code of Practice for Site Investigation, British Standards Institution (BSI).
- 2. BS 1377 (1990) Methods of Testing of Soils for Civil Engineering Purposes, BSI.
- 3. BRE Special Digest SD 1, Concrete in Aggressive Ground, 2005
- 4. Eurocode 7, Part 2: Ground Investigation & Testing (EN 1997-2:2007)
- 5. Geological Survey of Ireland, 1:100,000 Series
- 6. IS EN 13242:2002+A1:2007 Aggregates for unbound and hydraulically bound materials for use in civil engineering work and road construction
- 7. Site Investigation Practice: Assessing BS 5930 (1986), Geological Society Special Publication, No. 2.
- 8. Standard Recommendation SR21:2014:+A1:2016, NSAI
- 9. Stroud, M.A & Butler, F.G (1975) 'The SPT and the Engineering properties of Glacial Materials". Proceedings of the Symposium on Engineering Behaviour of Glacial Materials, Birmingham
- 10. Tomlinson, M.J. Foundation Design & Construction, 7th Ed

Appendix 1

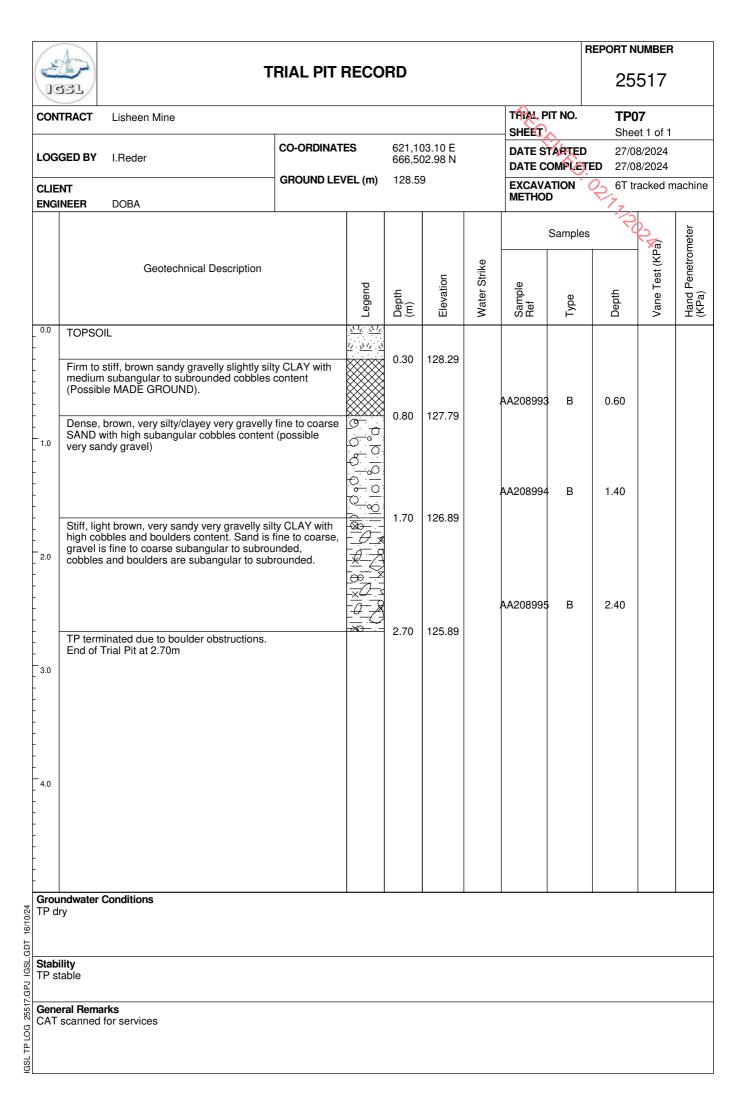

Trial Pit Records & Photographs


1	1							R	EPORT N	UMBER	
	T SSL T	RIAL PIT	RECO	RD					25	517	
CON	ITRACT Lisheen Mine							IT NO.			
		CO-ORDINAT	TES	621.0	12.20 E		SHEET	<u> </u>	Sheet 1 of 1		
LOG	GED BY I.Reder			666,7	24.97 N		DATE S	OMPLET		7/2024 7/2024	
CLIE	:NT	GROUND LE	VEL (m)	130.5	6		EXCAVA		2_5T tr	acked m	achine
ENG	INEER DOBA						METHO	J	<u> 17</u>		
								Samples	ج ج	кра	ometer
	Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa	Hand Penetrometer (KPa)
0.0	TOPSOIL		$\frac{\sqrt{h_{\ell}}}{h_{\ell}} \frac{\sqrt{h_{\ell}}}{\sqrt{h_{\ell}}}$								
- - - -	Firm to stiff, redish brown, slightly sandy gra with medium cobble content. Sand is fine to gravel is fine to coarse subangular to subro cobbles are subanglar to subrounded of var	unded, ious lithology.		0.30 0.80	130.26		AA203976	в	0.60		
- - - - -	Dense, brown, very clayey very gravelly fine SAND with high subangular to subrounded content (possible very sandy very gravelly c	cobbles									
- - - 2.0	Dense, light brown, slightly clayey/silty very to coarse SAND with high subangular to sub cobbles and low boulders content content	/ gravelly fine / brounded		1.80	128.76		АА203977 В	"В	1.50		
- - -	End of Trial Pit at 2.50m			2.50	128.06		AA203978	В	2.30		
- - 3.0 - - - -											
- - 4.0 - - - - -											
L											
Grou TP d	Indwater Conditions ry			<u> </u>	<u> </u>				<u> </u>	<u> </u>	<u> </u>
Stab	ility table										
Stab TP d TP s Gene	eral Remarks scanned for services; SA01 and PBT01 done	in location - fo	r all detai	ls see S	A01 and	PBT01	logs				

Cu.	т		RECO	RD				F	REPORT N	umber 517	
1	33L										
CON	ITRACT Lisheen Mine	1					TAIAL, P - SHEET	IT NO.	TP0 Shee	92 et 1 of 1	
LOG	GED BY I.Reder	CO-ORDINAT	ES	621,2 666,5	56.43 E 55.23 N		DATE S	TARTED		7/2024 7/2024	
CLIE ENGI	INEER DOBA	GROUND LEV	/EL (m)	126.7	4		EXCAVA METHO		ST tr	acked m	achine
								Samples	Ŕ	ax	meter
	Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
- 0.0 - - - -	MADE GROUND (comprised of brown silty s cobbles, organic matter, roots)			0.50	126.24		AA203982	2 B	0.40		
- - - - - - -	Dense, yellowish light brown, very gravelly v silty/clayey fine to coarse SAND with high su subrounded cobbles and boulders content (sandy very gravelly silty clay)	ubangular to	0 0 0 0 0 0 0	0.00	120.24		AA203983	в	1.40		
- - - - - - - - - - -	TP terminated due to boulder obstructions. End of Trial Pit at 1.80m			1.80	124.94	(Slow)					
3.0											
4.0											
Slow Stabi	undwater Conditions water flow at 1.7m bility stable										
Gene	eral Remarks scanned for services; SA02 and PBT02 done	in location - for	r all detai	ls see S	A02 and	PBT02	logs				

1	Am							R	EPORT N	UMBER	
10	BSL/	RIAL PIT	RECO	RD					25	517	
CON	ITRACT Lisheen Mine						TRIAL, P	T NO.	TP0 Shee	3 et 1 of 1	
LOG	GED BY I.Reder	CO-ORDINAT	TES	621,0 666,5	81.88 E 13.38 N		DATE ST		17/07	7/2024 7/2024	
CLIE	ENT INEER DOBA	GROUND LE	VEL (m)	129.7	0		EXCAVA METHO			acked m	achine
		I						Samples	2		eter
	Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	TOPSOIL Firm to stiff, redish brown, sandy gravelly CL medium cobble content. Sand is fine to coar fine to coarse subangular to subrounded, co	obbles are		0.30	129.40						
	subanglar to subrounded of various lithology MADE GROUND) Stiff to very stiff, light brown, sandy gravelly	CLAY with		1.10	128.60		AA203979	В	0.70		
2.0	high cobbles, low boulders and lenses of gre gravel between 1.1m - 1.5m content. Sand is coarse, gravel is fine to coarse subangular t subrounded, cobbles and boulders are suba subrounded of various lithology.	s fine to to					AA203980	В	1.60		
	End of Trial Pit at 2.80m			2.80	126.90		AA203981	В	2.60		
3.0											
4.0											
Grou TP d	Indwater Conditions										
	·· ,										
Stab TP s	ility table										
	eral Remarks scanned for services										

16/10/24 IGSL.GDT GPJ 25517.0 TP LOG IGSL .



25517.GPJ IGSL.GDT

16/10/24

TP LOG IGSL .

								F	REPORT NUMBER			
TRIAL PIT RECORD									25517			
CON	ITRACT Lisheen Mine						TRIAL, PIT NO. TP06					
LOG	GED BY I.Reder	CO-ORDINAT	CO-ORDINATES 621,152.79 E 666,625.18 N							8/2024		
-	CLIENT		GROUND LEVEL (m)		127.33		<u> </u>				cked machine	
ENG	INEER DOBA								-72		Τ	
						Sample		; ` <u>`</u>	a	meter		
	Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)	
0.0	MADE GROUND (comprised of brown sand clay, sandy gravel, organic matter, roots, col	ROUND (comprised of brown sandy gravelly										
	MADE GROUND (comprised of yellowish bro sandy gravelly clay, sandy gravel, cobbles, b		0.25	127.08		AA208996	В	0.50				
2.0	Dense, light greyish brown, silty/clayey very coarse subangular to sibrounded GRAVEL v subangular to subrounded cobbles and boul (possible original ground)	nded cobbles and boulders content			126.23		AA208997	В	1.50			
- - - - - - - - - -	TP terminated due to possible big boulders of End of Trial Pit at 2.50m	or rock	<u>@ > < 0 }</u>	2.50	124.83		AA208998	В	2.50			
- - - - - - - - - - - - -												
General Remarks CAT scanned for services												
TP si	table eral Remarks											
CAT	scanned for services											

									REPORT NUMBER					
JGSL		TRIAL PIT RECORD												
CONTRACT		Lisheen Mine	sheen Mine					THIAL, P	IT NO.	O. TP08 Sheet 1 of 1				
LOGGED BY		I.Reder	CO-ORDINATES GROUND LEVEL (m)		621,19 666,49	92.70 E 92.95 N		DATE STAPTED 27/			/08/2024 /08/2024			
CLIENT ENGINEER		DOBA			126.62			EXCAVATION 6T tracked				achine		
									Sample	s	a)	meter		
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)		
- 0.0	MADE GROUND (comprised of brown sandy gravelly clay, cobbles, organic pieces, roots)													
- - - - - - 1.0	high sul	Stiff to very stiff, brown, sandy very gravelly CLAY with high subangular cobbles and low boulders content (Possible MADE GROUND)			0.30	126.32		AA208991	В	1.00				
- - - - 2.0	coarse, subrour	f, light yellowish brown, sandy very g h cobbles and boulders content. San gravel is fine to coarse subangular to ded, cobbles and boulders are suba lithology.)	1 ⁷ 0,00 ⁴ 1,000 001,000,000	1.70	124.92		AA208992	в	2.00				
-		inated due to boulder obstructions. Frial Pit at 2.50m			2.50	124.12								
- 3.0 - - - -														
- - - - - - - - - - - -														
Groundwater Conditions TP dry														
Stability TP stable														
General Remarks CAT scanned for services														

IGSL TP LOG 25517.GPJ IGSL.GDT 16/10/24

1	Am								F	REPORT N	JMBER	
IGSL			RIAL PIT RECORD							25517		
CONTRACT Lisheen Mine				TAIM. PIT NO. TP09								
			CO-ORDINATI	ES	621,28	32.55 E		- SHEET	TARTED		t 1 of 1 3/2024	
LOGGED BY I.Reder		GROUND LEVEL (n		666,486.20 N			DATE COMPLETED 27		ED 27/08	7/08/2024		
CLIENT ENGINEER DOBA				120.37			EXCAVA METHO	eT tra	6T tracked mad			
									Samples	27°	a)	meter
	Geotechnical Description				Ę	trike				st (KP	enetrol	
				Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	MADE (GROUND (comprised of light brown/b clay, cobbles, organic pieces, roots)	prown sandy		0.10	126.27						
-	Firm to	stiff, light brown/grey mottled, very sa silty CLAY with high cobbles and bo	undy very ulders									
-	content.	Sand is fine to coarse, gravel is fine ular to subrounded, cobbles and bou ular of various lithology.	to coarse					AA208986	в	0.60		
-	subangi	nar of various inflology.		- <u>x</u> (- s					_			
1.0												
-												
-										1.00		
-								AA208987	В	1.60		
2.0												
-	Dense,	light grey, very silty, very sandy fine t ular to subrounded GRAVEL with hig	0 coarse		2.20	124.17						
-	to angu	ar cobbles and boulders content	n subangulai	0 ~ 0	2.60	123.77	(Slow)	AA208988	в	2.50		
-		inated due to boulder obstructions. Frial Pit at 2.60m			2.00	120.77						
3.0												
-												
-												
-												
- 4.0												
-												
-												
-												
-		Conditions										
Groundwater Conditions Slow water flow at 2.5m												
Stability TP stable												
General Remarks CAT scanned for services												

IGSL TP LOG 25517.GPJ IGSL.GDT 16/10/24

										REPORT NUMBER			
	BSL/	т	RIAL PIT F	RECO	RD					25517			
CON	TRACT	Lisheen Mine						TRIAL, P	it no.	TP10			
	GED BY	I.Reder	CO-ORDINATI	ES	621,39	91.04 E		- SHEET DATE S					
CLIE			GROUND LEV	666,485.94 DUND LEVEL (m) 126.76				DATE C		•	achine		
		DOBA								6T tracked machine			
									Sample	s ?	a	meter	
		Geotechnical Description				Б	Strike				est (KI	enetro	
				Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)	
0.0 	MADE C silty clay pieces)	GROUND (comprised of light brown s , angular cobbles and boulders, root	sandy gravelly ts, organic					AA208985	Р	0.50			
-	TP term	inated due to boulder obstructions.			0.70	126.06		AA208985	В	0.50			
-	End of T	rial Pit at 0.70m											
-													
-													
-													
2.0													
-													
-													
-													
3.0													
-													
-													
-													
_ 4.0 _													
-													
-													
Grou	Indwator (Conditions											
TP d	ry												
Stab i TP st	Ility table												
	eral Rema	rks for services											
0,11	Joannou												

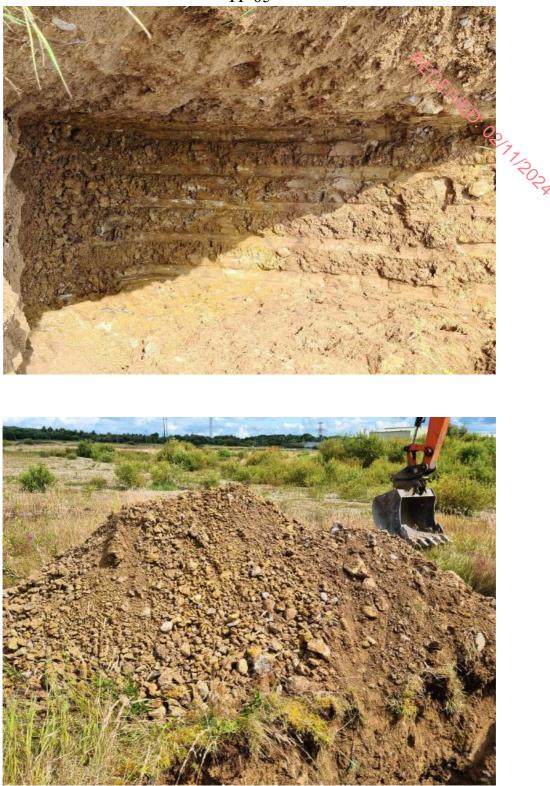
IGSL TP LOG 25517.GPJ IGSL.GDT 16/10/24

1.	And								F	REPORT NUMBER			
(E	J.J. SSL	т	RIAL PIT F	RECO	RD					25	517		
CON	TRACT	Lisheen Mine						TRIAL P	T NO.				
LOG	GED BY	I.Reder	CO-ORDINATE	S	621,22 666,50	24.14 E 00.70 N		ARTED					
CLIE	NT INEER	DOBA	GROUND LEV	EL (m)	126.33	3		EXCAVA			achine		
									Samples	2	neter		
		Geotechnical Description	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)		
- 0.0 - - - - -	MADE (sandy v	GROUND (comprised of light brown/g ery gravelly clay, cobbles, boulders, i	grey very roots)					AA208989	В	0.50			
- - 1.0 - -	gravelly content subang subang Dense,	stiff, light greyish/yellowish brown, ve silty CLAY with high cobbles and bo Sand is fine to coarse, gravel is fine ular to subrounded, cobbles and bou ular to subrounded of various litholog brownish grey, very silty/clayey very s		0.80 1.30 1.50	125.53 125.03 124.83		AA208990	В	1.10				
- - - - 2.0	\subang TP term	subangular to subrounded GHAVEL ular cobbles and boulders content inated due to boulder obstructions. Frial Pit at 1.50m	due to boulder obstructions.										
- - - - - - - - - - - - - - - - 3.0													
-													
Grou TP d		Conditions											
Stability TP stable													
	General Remarks CAT scanned for services												

IGSL TP LOG 25517.GPJ IGSL.GDT 16/10/24

Project Number: 25517 Site: Lisheen Mine

TP 01



TP 06

Appendix 2

Cable Percussive Borehole Records

0EE1	7
2001	1

co	NTRAC	T Lishe	een Mine								BOREH	OLE NO.	BH01		
					RIG TY	DE			Dando 20		SHEET		Sheet 1 of 1		
	-ordin Ound	LEVEL (m	666,73	15.75 E 38.35 N 127.20	BOREH	IOLE DIAM		1m) 2	200 3.10		DATE COMMENCED 30/07/2024 DATE COMPLETED 30/07/2024				
-	IENT GINEEF	DOB	A			T HAMMER REF. NO. ERGY RATIO (%)						BY SSED BY	P.Allan F-C		
َ ٦										-	nples		202	e	
Depth (m)			Des	cription		Legend	Elevation	Depth (m)	Ref. Number	Sample Type	(m)	Recovery	Field Test Results	Standpipe Details	
0				LT/CLAY wit GROUND)	th low gravel	<u>7.1</u> × 7.1.									
	conte	ni (Probab		GROUND)		$\frac{1}{\sqrt{1}} \frac{\sqrt{1}}{\sqrt{1}} \frac{\sqrt{1}}{\sqrt{1}}$									
1						<u> </u>	126.10	1.10	AA228304	в	1.00		N = 23		
	Stiff to conte		gravelly C	LAY with me	edium cobble								(4, 6, 4, 7, 7, 5)		
2									AA228305	В	2.00		N = 29 (5, 7, 7, 8, 7, 7)		
,							124.10	3.10	AA228306	в	3.00		N = 25/75 mm		
3	Obstr End c	uction of Borehole	e at 3.10 m	1		<u>~</u> _		5.70	0000		3.00		(10, 25, 25)		
		201011010	, at off off												
4															
5															
6															
•															
7															
8															
9															
HA	ARD ST	RATA BOF		ELLING						D '-	· · · ·		ATER STRIKE DET	AILS	
		10 (11)	(1)	omments		Wate Strik	e De	sing s pth	Sealed At	Ris To		ime nin) C	comments		
	.30 .90	1.50 3.10	1 1.5										No water strike		
												GRO	OUNDWATER PRO	GRESS	
INS	TALLA		AILS			Dat		Hole Depth	Casing Depth	De W	pth to ater	Commer			
	Date	Tip Dept	h RZ Top	RZ Base	Туре	_		2000							
RE	MARKS	G CAT sca out .	nned loca	tion and har	nd dug inspection	n pit was ca	rried	D - Small	Disturbed (tub)	d		Sample	ndisturbed 100mm Diameter		
1.30 1.50 1 1.5 No water strike 2.90 3.10 1.5 Instruction of the strike Instruction of the strike INSTALLATION DETAILS Date Hole Depth Casing Depth to Water Comments Date Tip Depth RZ Base Type Instruction of the strike Instruction of the strike Instruction of the strike REMARKS CAT scanned location and hand dug inspection pit was carried out . Sample Legend Destined (tub) Besturbed (tub) Besturb															

0EE1	7
2001	1

_	-									I	-				
	NTRAC		een Mine		1						BOREH	ole no.	BH02 Sheet 1 of 1		
	ORDIN	IATES LEVEL (m [.]	666,6	42.35 E 82.77 N 129.72		Pe Iole Diam Iole Dept		וm) 2	Dando 20 200 2.70		DATE COMMENCED 26/07/2024 DATE COMPLETED 29/07/2024				
	ENT GINEER	DOB	A			MMER RE			1		BORED BY P.Allan PROCESSED BY F_C				
Ê							_	Ê		-	nples		703	be	
Depth (m)			Des	cription		Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe Details	
0	TOPS	OIL				$\frac{\underline{x}^{\mathbf{i}} \cdot I_{\mathbf{j}}}{\underline{x}^{\mathbf{i}} \cdot \underline{x}^{\mathbf{i}} \cdot I_{\mathbf{j}}} \cdot \underline{x}^{\mathbf{i}}$	129.42	0.30							
	Firm b	prown san	dy SILT/C	LAY			-		-						
1	Stiff to very stiff grey/brown sandy SILT/CLAY with low cobble and boulder content						128.92	0.80	 AA228310	В	1.00		N = 29 (4, 4, 5, 6, 9, 9)		
2							127.02	2.70	AA228311	в	2.00		N = 31 (5, 7, 7, 7, 8, 9) N = 50/75 mm (25, 50)		
- 3		uction f Borehole	e at 2.70 r	n											
- 5															
- 6															
8															
9															
		RATA BOI	Time			Wate	ar Co	sing S	Sealed	Ris	_	imo	ATER STRIKE DET	AILS	
		To (m) 1.90	(h) C	Comments		Strik	e De	epth	At			nin) C	Comments		
	1.80 1.90 1 2.50 2.70 1.5											No water strike			
												GRO	OUNDWATER PRO	GRESS	
INS						Dat		Hole Depth	Casing Depth	De W	pth to ater	Commer	nts		
	Date	Tip Dept	h RZ Top	RZ Base	Туре						-				
RE	MARKS	GAT sca out .	Inned loca	ation and ha	and dug inspection	ı pit was ca	arried	LB - Large	Le Legen Disturbed (tub) Disturbed e Bulk Disturber ironmental San	d	+ Vial + Tub)	Sample P - Uno	ndisturbed 100mm Diameter e disturbed Piston Sample ater Sample		

REPORT NUMBER

2	\sim															
	NTRACT		en Mine									BOREH SHEET		IO.	BH03 Sheet 1 of 1	
	-ordin/ Ound Li	ATES EVEL (mC	621,22 666,63)D)	4.65 E 4.11 N 127.39	B		E LE DIAM LE DEPT			Dando 20 200 2.50	000	DATE COMMENCED 30/07/2024 DATE COMPLETED 30/07/2024				
					-			-				BORED PROCE		. С РУ	P.Allan	
EINC	GINEER	DOB	4			NERGI	RATIO (%	/o)	1			nples	SSED	ы	7F_C	
Depth (m)			Desc	ription			Legend	Elevation	Depth (m)	Ref. Number	Sample Type	i –	Becovery	d iavocar	Field Test Results	Standpipe Details
0	Firm bi	own SILT	CLAY wi	th low cobb	ole content			2						-		
								126.49	0.90							
- 1	Very stiff grey/brown sandy gravelly CLAY with low cobble content						8 X			AA228300	В	1.00			N = 30 (5, 5, 7, 8, 8, 7)	
2								124.89	2.50	AA228301	В	2.00			N = 38 (6, 7, 10, 9, 9, 10) N = 50/75 mm	
3		Borehole	at 2.50 m												(18, 20, 50)	
		-	Time	omments			Wate		asing	Sealed	Ris		Time	T	TER STRIKE DET	AILS
	From (m) To (m) Time (h) Comments 2.10 2.50 2 2						Strik		epth	At	To		min)	N	omments Io water strike	
										Contract		- 41- 2	G	RO	UNDWATER PRO	GRESS
INSTALLATION DETAILS Date Tip Depth RZ Top RZ Base Type					Dat	te	Hole Depth	Casing Depth	De W	pth to ater	Comm	nent	S			
2. INS	MARKS	CAT scar out .	ned locat	ion and ha	nd dug insp	ection p	bit was ca	urried	B - Bulk LB - Lai	I Die Legen all Disturbed (tub) Disturbed rge Bulk Disturbe nvironmental Sar	ed	+ Vial + Tub)	Sa P -	ample - Undis	listurbed 100mm Diameter sturbed Piston Sample er Sample	

0EE1	7
2001	1

1	NTRAC	T Lishe	en Mine								BOREH		D. BH04		
			666,58	82.02 E 80.48 N		PE OLE DIAM OLE DEPT		nm)	Dando 20 200 2.80	00	SHEET Sheet 1 of 1 DATE COMMENCED 29/07/2024 DATE COMPLETED 20/07/2024				
CLI	ENT	LEVEL (mC		129.73	SPT HA	MMER RE	F. NO.		2.80		DATE COMPLETED 29/07/2024 BORED BY				
ENC	GINEER	DOB	A		ENERG	Y RATIO (9	%)	1			PROCE	SSED E	BY TEC	1	
Depth (m)			Des	cription		Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Dept Dept (m)	Recovery	Field Test Results	Standpipe Details	
								Ō	άž	űГ	<u>د</u> م	, B		۳ مر	
0	TOPS Firm to conte	prown SILT	CLAY w	ith low to m				 AA228302	В	1.00		N = 24			
	Stiff to low co	Stiff to very stiff grey/brown sandy gravelly CLAY with low cobble content					128.53	1.20					(6, 8, 9, 5, 5, 5)		
2							126.93	2.80	AA228303	В	2.00		N = 36 (6, 7, 7, 10, 10, 9) N = 50/75 mm		
- 3	Obstri End o	uction f Borehole	at 2.80 n	n									(25, 50)		
- 4															
- 6															
- 7															
8															
- 9															
-															
	HARD STRATA BORING/CHISELLING						er Ca	sing	Sealed	Rise	е т	ima	VATER STRIKE DET	AILS	
1.	n (m) 50 60	initial initial <t< td=""><td>Wate Strik</td><td>e De</td><td>epth</td><td>At</td><td>To</td><td></td><td>min)</td><td>Comments No water strike</td><td></td></t<>		Wate Strik	e De	epth	At	To		min)	Comments No water strike				
INC	TAL / A							Hole	Casing	Dei	oth to		ROUNDWATER PRO	GRESS	
	TALLA Date	TION DET		RZ Base	Туре	Dat		Depth	Depth	Ĭ	pth to ater	Comme	ents		
1.50 1.60 1 2.60 2.80 1.5 INSTALLATION DETAILS Date Tip Depth REMARKS CAT scanned location and hand dug inspection pit was ca out .							urried	B - Bulk LB - Larg	Die Legene I Disturbed (tub) Disturbed je Bulk Disturber vironmental San	d	+ Vial + Tub)	Sam P - L	Undisturbed 100mm Diameter ple Indisturbed Piston Sample Water Sample		

$\cap \Box \Box \downarrow$	
ショカ	
200	

0		T Liok	a an Mina								BOREH		0. BH05		
	NTRAC		neen Mine			F			Donal- 00		SHEET		Sheet 1 of 1		
	-ordin Ound L	ATES .EVEL (m	666,5	50.80 E 579.94 N 127.71		'e Dle Diam Dle Dept		nm)	Dando 20 200 0.70		DATE COMMENCED 28/08/2024 DATE COMPLETED 28/08/2024				
		DOI	۸								BORED		D.Tolster BY F_C		
EINC	GINEER	DOE	БА		ENERGI	(RATIO (9	/o)				PROCE	33ED I			
Depth (m)			Des	scription		Legend	Elevation	Depth (m)	Ref. Number	Sample Type	· · · · ·	Becoverv	Field Test Results	Standpipe Details	
	(Proba Firm li cobble Obstru	rown san able MAD ght brown e content uction - P	DÉ GROU n very sar	ND) ndy SILT/CL/ pulder	casional gravel		127.61	▲ 0.10 ▲ 0.30 0.70		. В	0.50				
HA	RD STI	RATA BO	RING/CHI	SELLING									WATER STRIKE DET	AILS	
Fror	m (m) ⁻	To (m)	Time (h)	Comments		Wate Strik	er Ca e De	sing epth	Sealed At	Ris To		⁻ ime min)	Comments		
0.	60							·	-			, 	No water strike		
												G	ROUNDWATER PRO	GRESS	
INS	INSTALLATION DETAILS Date Tip Depth RZ Top RZ Base Type					Dat		Hole Depth	Casing Depth	De W	pth to ater	Comm	nents		
INS REI	MARKS	out . Ob	anned loc ostruction empted rel	encountered	nd dug inspection at 0.70m. Moved	pit was ca rig to BH0	urried 5A	B - Bulk LB - Lar	Die Legen Il Disturbed (tub) Disturbed ge Bulk Disturbe ivironmental Sar	d	+ Vial + Tub)	Sar P -	- Undisturbed 100mm Diameter mple Undisturbed Piston Sample - Water Sample		

$\cap \Box \Box \downarrow$	
ショカ	
200	

1	_	10												
	NTRAC		heen Mir			_				:	BOREH		D. BH05A Sheet 1 of 1	
	-ORDIN OUND	IATES LEVEL (n	666	,150.80 E ,579.94 N 127.71		'E DLE DIAM DLE DEPT		ז (m	Dando 20 200 2.50				ICED 28/08/2024 JED 28/08/2024	
-	ENT GINEER	DO	BA			MMER REI (RATIO (%					BORED PROCES		D.Tolster	
	-						1				ples			
Depth (m)			D	escription		Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe Details
- 0	TOPS	SOIL			/		127.61	0.10						
	\grave Firm t	l (Probab	ole MADE t brown v	GROUND)	th occasional		127.41	0.30	_/ AA211709	в	1.00		N = 18 (3, 2, 3, 4, 4, 7)	
2							125.21	2.50	AA211710	В	2.00		N = 27 (5, 4, 6, 7, 7, 7)	
3		uction f Boreho	le at 2.5() m										
HA	RD ST	RATA BO		ISELLING			·			I			VATER STRIKE DET	AILS
	n (m)	To (m)	Time (h)	Comments		Wate Strik	er Ca <u>e </u> De	sing S pth	Sealed At	Rise To		ime nin)	Comments	
2.	40	2.50	1.5										No water strike	
<u> </u>									Cooler		oth t-		ROUNDWATER PRO	GRESS
INS	TALLA Date	TION DE		op RZ Base	Туре	Dat		Hole Depth	Casing Depth	W	oth to ater	Comme	ents	
INS REI	MARKS	CAT so out .	anned lo	cation and ha	and dug inspection	pit was ca	urried	B - Bulk L LB - Larg	Disturbed (tub) Disturbed (tub) Disturbed e Bulk Disturbe vironmental San	d	⊦ Vial + Tub)	Sam P - L	Undisturbed 100mm Diameter ple Indisturbed Piston Sample Water Sample	

0EE1	7
2001	1

CO	NTRAC	T Lish	een Mine								ворено	OLE NO.	BH06	
CO	-ORDIN	ATES	621,1	17.29 E	RIG T				Dando 20	00	SHEET	<u> </u>	Sheet 1 of 1	
GR	ound i	_EVEL (m		89.67 N 127.46		HOLE DIAN			200 3.80				ED 29/08/2024 ED 29/08/2024	
-	ENT GINEER	DOE	BA			AMMER RE GY RATIO ('					BORED	BY SSED BY	D.Tolster	
					I					San	nples		20	0
Depth (m)			Des	cription		Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe Details
0	TOPS	OIL				<u><u><u>x</u>, 1</u>, <u>x</u>, 1</u>								
-1	Soft n conte		own sandy	SILT/CLAY	with low cobble				AA219547	В	1.00		N = 7 (1, 2, 2, 1, 2, 2)	
2	Firm r and c	nottled gr obble con	ey sandy S tent	SILT/CLAY	with low gravel		125.96	1.50	 AA219548	В	2.00		N = 18 (2, 2, 4, 4, 5, 5)	
3	Very s	stiff brown and bou	sandy silt Ider conte	y gravelly C nt	CLAY with low		124.86	2.60	 AA219549	в	3.00		N = 37 (4, 4, 8, 10, 10, 9)	
	Obstr	uction - P	ossible bo	ulder			- 123.66	3.80					N = 50/75 mm (18, 21, 50)	
	ARD STI	RATA BO	RING/CHIS	SELLING		Wat		sing	Sealed	Ris		imo	TER STRIKE DET	AILS
		To (m)	(h) C	comments		Strik		epth	At			nin) C	omments	
3.	.70	3.80	1.5										No water strike	
								Hole	Casing	Do	oth to	_	OUNDWATER PRO	GRESS
	TALLA Date	TION DET		RZ Base	Туре	Da		Depth	Depth	W	pth to ater	Commen	ts	
REI	MARKS	CAT sca out .	anned loca	tion and ha	and dug inspectio	n pit was ca	arried	B - Bulk I LB - Larg	Die Legen Disturbed (tub) Disturbed Je Bulk Disturber vironmental San	d	+ Vial + Tub)	Sample P - Und	disturbed 100mm Diameter isturbed Piston Sample ter Sample	

REPORT NUMBER

CO	NTRAC -ORDIN	ATES	666,51	9.03 E 8.46 N	E		DLE DIAM		mm)	Dando 20 200	000		OMMEN	Sheet 1 of 1 VCED 27/08/2024	
GR	OUND	_EVEL (m	OD)	126.71	E	BOREHC	DLE DEPT	Ή(m)		5.10		DATE CO	OMPLE	DED 28/08/2024	
	ENT GINEER	DOB	•				MER RE					BORED		D.Tolster	
	JINEEN	DOB	А				RATIO (7	/0)				nples	53ED E		
Depth (m)			Desc	cription			Legend	Flevation	Depth (m)	Ref. Number	Sample Type	(m)	Recovery	Field Test Results	Standpipe Details
0	TOPS	OIL				/			-						
- 1	Firm g conte	grey/browr nt (Probab	a sandy SI Ne MADE	LT/CLAY w GROUND)	rith low grav		$\frac{1}{12} \frac{\sqrt{12}}{\sqrt{12}} \frac{\sqrt{12}}{\sqrt{12}}$			AA229644	В	1.00		N = 11	
'				T/CLAY wi GROUND)	th low cobb)	ole	$\frac{\sqrt{1}}{\sqrt{1}} \cdot \frac{\sqrt{1}}{\sqrt{1}} \cdot \frac{\sqrt{1}}{\sqrt{1}}$	-	1 1.20	AA229645		1.50		(2, 2, 2, 2, 3, 4)	
2	Stiff a	rev/brown	sandy silt	y gravelly (CLAY with lo	0.00/		124.41	2.30	AA229646	в	2.00		N = 16 (4, 4, 6, 3, 4, 3)	
3	cobble	e and boul	der contei	nt						AA229647	В	3.00		N = 26 (4, 6, 6, 7, 6, 7)	
	Dana	a grou fino	<u>to opprop</u>	<u>aandu ana</u>				122.81	3.90			3.50		N = 37	
4	Dense	e grey line	to coarse	sandy ang	ular GRAV			2		AA229649	В	4.00		(6, 8, 10, 10, 8, 9)	
5	Obstr End o	uction f Borehole	e at 5.10 m	1			0000	121.61	5.10	AA229650	В	5.00		N = 50/75 mm (25, 50)	
6															
7															
- 8															
9															
HA	RD ST	RATA BOF	RING/CHIS	ELLING									v	VATER STRIKE DET	AILS
Fror	m (m)	To (m)	Time (h) C	omments			Wate Strik		asing epth	Sealed At	Rise To		ïme nin)	Comments	
	.10 .00	2.40 5.10	1 1.5				3.60		3.60	No	2.40		20	Moderate	
													GF	ROUNDWATER PRO	GRESS
INS	TALLA	TION DET	AILS				Dat	te	Hole Depth	Casing Depth	Der	pth to ater	Comme		
	Date	Tip Dept	h RZ Top	RZ Base	Туре	9	28-09	-24	5.10	Nil			End of BH	Η	
REI	MARKS	CAT sca out .	nned loca	tion and ha	and dug ins	pection (oit was ca	urried	LB - La	ple Legen all Disturbed (tub) Disturbed ge Bulk Disturbe nvironmental Sar	d	+ Vial + Tub)	Sam P - L	- Undisturbed 100mm Diameter nple Undisturbed Piston Sample Water Sample	

2551	7
2001	1

CO	NTRAC	Lisi	heen Mine								BOREH		NU.	BH08 Sheet 1 of 1	
	-ordin Ound I	ATES LEVEL (n	666,4	34.77 E 86.83 N 126.53		PE IOLE DIAM IOLE DEPT		nm)	Dando 20 200 1.40					ED 27/08/2024 ED 27/08/2024	
-	ENT				-	AMMER RE	-				BORE		· (D.Tolster	
ENC	GINEER	DO	BA		ENERG	AY RATIO (%)	1			PROCE	SSED	BY	F_C	
Depth (m)			De	scription		Legend	Elevation	Depth (m)	Ref. Number	Sample	Depth Depth		Recovery	Field Test Results	Standpipe Details
0 -1 -2 -3 -4 -5 -6 -7 -8 -9	Conte Firm g and b	nottled br nt grey/brow oulder cc uction	n sandy S	GILT/CLAY W	Y with low gravel		126.43	0.30_	AA219500		0.80			N = 15 (4, 3, 3, 5, 4, 3) N = 50/75 mm (25, 50)	
HA	RD ST	RATA BC	RING/CHI	SELLING									WA	TER STRIKE DET	AILS
Fror	m (m)	To (m)	Time (h)	Comments		Wate Strik		sing epth	Sealed At	Ris To		Time (min)	C	omments	
1.	30	1.40	1.5					- pr st 1			-		1	No water strike	
							,			1.			GRO	UNDWATER PRO	GRESS
	TALLA Date	TION DE		o RZ Base	Туре	Da	te	Hole Depth	Casing Depth	De W	pth to ater	Com	men	ts	
REI	MARKS	CAT sc out .	anned loc	ation and ha	and dug inspection	n pit was ca	arried	B - Bulk LB - Larc	Die Legen I Disturbed (tub Disturbed ge Bulk Disturbed vironmental Sai	ed	+ Vial + Tub	S	ample - Undi	disturbed 100mm Diameter isturbed Piston Sample ter Sample	

Appendix 3

Rotary Drillhole Records & Photographs

REPORT NUMBER

্যিত্রন্থ	2	8															
CONTR	RAC	г I	ishee	en Mine , Co	o.Tippe	erary						DFII SHE	A HOLE	NO	RCO		0
CO-OR GROUI	ND L			621,215. 666,738.3 D)		0		RIG TYPE FLUSH INCLINATIO	ON (deg)		BT-440 Air/Mist -90	DAT DAT		ED.	02/08	et 1 of 8/2024 8/2024 SL - J	1 1
			DOBA					CORE DIA		m)	-90 78		GED BY			0' Sh	
 Downhole Depth (m) Core Run Depth (m) 	T.C.B.%	S.C.R.%	R.Q.D.%	Fractu Spacir Log (mm) 0 ²⁵⁰	ng)	Non-intact Zone	Legend			Descript				Depth (m)	Elevation	Standpipe Details	SPT (N Value)
1								as returns		ING: No rec / CLAY.	overy, ob:	served by c	ariller	1.50	125.70		
2							8 0 0 0 0 0 0 0 0	SYMMETF as returns	RIX DRILL of clayey	ING: No rec GRAVEL wi	overy, obs th cobbles	served by c	driller				N = 41 (4, 7, 8, 9, 12) N = 49 (7, 9, 12,
4								SYMMETF as returns	RIX DRILL of clayey	ING: No rec GRAVEL	overy, obs	served by c	friller	4.30	122.90		N = 52/2 mm (5, 9, 17, 13)
6								SYMMETF as returns	RIX DRILL of sandy (ING: No rec GRAVEL	overy, obs	served by c	driller	6.00	121.20		N = 5 ⁻ (7, 8, 12, 13, 13
7	0							as returns	of possibl						120.40 119.70		
8 8.32	2	0 4	0					blue/grey, structure, dolomitise	fine-graine possibly sl d), fresh to	rong, medium ed LIMESTO ightly metar o slightly (so nedium to cl	DNE (stror norphosed lution) we	matactic d, locally sli athered.	ightly				
9.62	2	0 17	11		-			locally rou Apertures smeared,	gh, fractur are tight to commonly	es are plana o moderatel calcite/dolo ohorizontal t	ar to locall y open, loc mite-veine	y undulose cally clay ed, slightly	iron				
REMAR	RKS							1						W۵-	IER ST	RIKF	DETAILS
		from	0.00-	7.50m					Water Strike 6.80	Casing Depth 6.80	Sealed At N/S	Rise To	Time (min)	Co	eepage	s	
										Hole	Casing	Denth t	0 0			VATEF	R DETAIL
NSTAI Date				ILS RZ Top R	Z Base	e	Тур	De	Date	Depth	Depth		Com	nment	S		
									1	1		1	1				

REPORT NUMBER

ાહા	31												20		. ,
ONTR	RACT	L	ishee	n Mine , Co.Tip	perary						HOLE	NO	RCO		
:0-0F	RDINA	TES		621,215.75 E						SHEE	~ <u>`</u>			et 2 of 2	
			(m0]	666,738.35 N			RIG TYPE		BT-440		DRILLE			8/2024 8/2024	
LIEN	ND LI T		UNOL) 127	.20		FLUSH INCLINATION (deg)	Air/Mist -90		ED BY	<u> </u>	<u> </u>	iSL - Jł	
NGIN		D	OBA				CORE DIAMETER		-90 78		ED BY	-		0' She	
Ê Ê														50	
<u>Downnole Deptn (m)</u> Core Run Depth (m)	%.	3.%	.Q.D.%	Fracture	ne									etaile	(e
n lē	T.C.R.%	S.C.R.%	R.Q.I	Spacing Log	ct Zc			Descript	ion			(L	c	D D	Valu
<u> Core Run Depth (m)</u>				(mm)	8 Non-intact Zone	Legend						Depth (m)	Elevation	Standpipe Details	SPT (N Value)
ő S				0 250 5	Non No	Leg						Dep	Ele	Stai	SP1
0	100	37	35				Medium strong to blue/grey, fine-gra	strong, mediu	m to thinly b	oedded, ligi	ht				
10.7	70						structure, possibly dolomitised), fresh	slightly metar	norphosed,	locally slig	htly				
1							Discontinuities are		,		to				
	100	46	35				locally rough, fract	ures are plana	ar to locally	undulose.	.0				
11.6	66						Apertures are tigh smeared, commor	ly calcite/dolo	mite-veined	d, slightly ir	on				
2	100	25	17				stained. Dips are s irregular. <i>(continue</i>	ed)	to locally 40	៸-ວ∪*, /U* 8	×				
12.5	50					╞─┼	End of Dor-b	ole at 12.50 m				12.50	114.70		
							End of Boren	01e at 12.50 fr	I						
3															
4															
1															
5															
6															
7															
8															
9															
EMAI	RKS											W۵٦	EBST	BIKF I	DETAILS
		from (0.00-	7.50m			Water		Sealed At	Rise To	Time (min)		mment		
							6.80	6.80	N/S	10	(((((((s	eepag	e	
												GRC	DUNDV		DETAI
															DETAIL
ISTA	LLAT	ION D	ETAI	LS			Date	e Hole Depth	Casing Depth	Depth to Water	Com	ments	6	<u></u>	DETAIL

REPORT NUMBER

CONTI CO-OF GROU CLIEN	rdin/ Jnd L	ATES		en Mine , Co.Tippe 621,042.35 E 666,682.77 N D) 129.7			RIG TYPE FLUSH INCLINATION (deg))	BT-440 Air/Mist -90	DATE DATE	LHOLE T DRILLE LOGGE	D	31/0 01/0)2 et 1 of 1 7/2024 8/2024 iSL - JI	
			OBA				CORE DIAMETER		78	LOG	GED BY		Ъ.	O' Sh	ea
 Downhole Depth (m) Core Run Depth (m) 	T.C.R.%	S.C.R.%	R.Q.D.%	Fracture Spacing Log (mm) 0 ²⁵⁰ 500	Non-intact Zone	Legend		Descript				Depth (m)	Elevation	Standpipe Detail	SPT (N Value)
1							SYMMETRIX DRI as returns of CLA	LLING: No rec Y	overy, obse	erved by d		1 50	100.00		
2							SYMMETRIX DR as returns of grav	elly CLAY.			riller	2.55	128.22		N = 54/22 mm (5, 9, 18, 19)
3	100) 71	44				SYMMETRIX DR as returns of poss Strong to very stru- blue/grey, fine-gra structure, possibly dolomitised), fres	sible ROCK ong, thickly to t ained LIMEST(y slightly metan	hinly bedde DNE (strom norphosed,	ed, light atactic locally sli		2.80	126.92	0 0 0 0 0 0	
4 4.3 5	30) 77	69		640.0000		Discontinuities and locally rough, frac Apertures are tigh smeared, commo stained. Dips are	tures are plana It to locally mod nly calcite/dolo	ar to locally derately ope mite-veined	undulose en, locally d, slightly i	clay			0 0 0	
5.8	30													0 0 0 0 0	
7 7.3	30	0 61	57	-	520									0 0 0 0	
8 8.8	100) 79	70		510									0 0 0 0 0 0	
9	100) 71	66		830									0 0 0 0 0 0	
REMA Hole c		from	0.00-2	2.80m			Wate		Sealed	Rise	Time		mmen		DETAILS
							Strike	e Depth	At	То	(min)	N	o wate	er strike	e recorde
NSTA)FTAI	15			Dat	Hole	Casing	Depth to Water) Com	GRC ment		VATER	DETAIL
Dai 01-08	ite	Tip D		RZ Top RZ Bas 1.00 10.20		Typ 50mm	01-08-	Depth	Depth 2.80	Water 5.90		levels r		5 mins af	ter end of

OF	EE	4	7
27	าา		
<u>_</u>	$\mathbf{v}\mathbf{v}$		

	~	2											^					
C	ONTF	RACT	Ĺ	ishe	en Mine ,	Co.Tipp	erary		1				DFild SHEE		NO	RC(Shee	02 et 2 of	2
		DINA	TES EVEL	(mO	621,04 666,68 D)	2.35 E 2.77 N 129.7	2		RIG TYPE FLUSH			BT-440 Air/Mist	DATE		K 🔪	31/0	7/2024 8/2024	ŀ
	LIEN ⁻ NGINI		C	OBA	L.				INCLINATI CORE DIA	ON (deg) METER (mi	m)	-90 78		LED BN GED BN			iSL - J . O' Sh	
Downhole Denth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Frac Spa Lc (m	cing og m)	Non-intact Zone	Legend			Descript	lion			Depth (m)	Elevation	Standpipe Detail	SPT (N Value)
- 1	0 10.2	0							End	of Borehole	e at 10.20 m	1			10.20	119.52	°⊟°	
	2 3 4 5 6 6 7 7 8																	
	EMA				1							<u> </u>	D :		WA	TER ST	RIKE	DETAILS
	ole ca	ased	from	0.00-	-2.80m					Water Strike	Casing Depth	Sealed At	Rise To	Time (min)	N		er strike	e recorded
N N N	STA)ET	ILS					Date	Hole	Casing	Depth to Water	Cor	GRC		VATEF	RDETAILS
	Dat 1-08-	е		epth	RZ Top 1.00	RZ Bas 10.20	9	Ty 50mr	pe n SP	-	Depth	Depth	Water			~		
ا2																		

REPORT NUMBER

юл ю-о				shee	n Mine , Co.Tip 621,224.65 E	perary						SHE				03 et 1 of 2 8/2024	
RO	UNE) LE	VEL	(mOI	666,634.11 N	39					BT-440		E LOGG			8/2024 8/2024	
LIE					, 127.			FLUSH INCLINATIO			Air/Mist -90		LED BY			iSL - Jk	
NGI		R	D	OBA				CORE DIA	METER (m	m)	78	LOG	GED BY	,		O' She	a
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fracture Spacing Log (mm)		Legend			Descrip	tion			Depth (m)	Elevation	Standpipe Detail	SPT (N Value)
							0 0	SYMMETF as returns		ING: No red / SAND.	overy, obs:	erved by d	riller				
2							000	SYMMETF as returns	RIX DRILL of GRAVE	ING: No red EL with bou	overy, obs ders	erved by d	riller		125.89		
3.	.00							as returns Strong to	of possible	(where co	npetent), t	hickly to thi	riller		124.94 124.39		
4	.50	93	44	38				LIMESTO metamorp (solution)	NE (stroma hosed, loc weathered I (to a brov	ey to brown atactic struc ally slightly to locally n vn clayey gi .20m)	ture, possi dolomitise noderately/	bly slightly d), slightly highly				0 0 0 0 0 0 0 0 0	
	.00	40	15	15				locally rou are tight to calcite/dol	gh, fractur locally op omite-vein y iron stair	idely to closes are plan en locally c ed, locally s ied. Dips ar	ar to irregu lay smeare andv clav-	lar. Apertured, common filled. local	res nly Iv				
7.	.50	20	5	0												0 0 0 0 0 0 0 0	
8.	.50	70	27	21												0 0 0 0	
9.	.00	100	40	30												0 0 0 0 0 0	
	ARK		75	69								<u> </u>		WA	TER S		DETAILS
ole	cas	ed fr	om ().00-;	3.00m				Water Strike	Casing Depth	Sealed At	Rise To	Time (min)	-	ommen Io wate		recorde
														GRO	OUND	WATER	DETAIL
Da	ALL ate 08-2-	Т			LS RZ Top RZ Ba 2.00 10.50		Typ 50mn		Date	Hole Depth	Casing Depth	Depth to Water	Com	ment	S		

(Ellipa
JGSL/

$\cap r$. – –	4 7
・ノト	っちち	1 /
<u>_</u>	ມມມ	1 /

1	10	1																
CONT				shee	en Mine ,		erary						DFIL SHEE		NO	RC(Shee)3 et 2 of	2
CO-0	RD	INAT	TES		621,224 666,634	4.65 E 4.11 N			RIG TYPE			BT-440	DATE			06/0	8/2024	ŀ
GRO) LE	VEL (mOI		127.39	Э		FLUSH			Air/Mist		LOGG	<u> </u>		8/2024	
CLIEN		R	D	ЭВА					INCLINATION (deg) -90 CORE DIAMETER (mm) 78					DRILLED BY			iSL - Jl O' Sh	
1 1	Core Hun Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Frac Spac Lo (mr 0 ²⁵⁰	cing vg m)	Non-intact Zone	Legend		·	Descripti	on			Depth (m)	Elevation	Standpipe Detail	SPT (N Value)
10 10 11 11	0.50						<u> </u>		End o	of Borehole	at 10.50 m				<u>10.50</u>	116.89	0 0 0	
13																		
- 15																		
- 16																		
- 17																		
- 18																		
REM/			rom ()	.00-:	3.00m					Water		Sealed	Rise	Time				DETAILS
- REM/ Hole (INST/ Da 07-0	240		20							Strike	Depth	At	To	(min)	N		r strike	
INST	ALI	ΑΤΙΟ	וח אכ	ΕΤΔΙ	LS					Date	Hole	Casing	Depth to Water	Corr	GRC		VAIEF	DETAILS
Da 07-0	ate	Т		epth	RZ Top 2.00	<u>RZ Base</u> 10.50		Tyr 50mm		07-08-24	Depth 10.50	Depth 3.00	4.05		levels r		5 mins af	ter end of

REPORT NUMBER

(E)	INE	- 0	VEL ((mOl OBA	621,082.02 E 666,580.48 N D) 129.7	<u>′3</u>		RIG TYPE FLUSH INCLINATION (deg) COPE DIAMETER (mr		BT-440 Air/Mist -90 78		DRILLED LOGGED ED BY)8/2024)8/2024 GSL - J	4 IK
	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fracture Spacing Log (mm) 0 ²⁵⁰ 500	Non-intact Zone	Legend	CORE DIAMETER (mn	Descripti	on		Denth (m)		Standpipe Details	SPT (N Value)
1								SYMMETRIX DRILLIN as returns of CLAY	NG: No reco	overy, obse	erved by dril		50 128.2	2	
2								SYMMETRIX DRILLIN as returns of gravelly	CLAY.	-	-	ler 2.4	<u>128.2</u> 127.3		
3	3.00	100	0	0				SYMMETRIX DRILLIN as returns of possible Medium strong to stro blue/grey, fine-grained	ROCK	thinly bed	ded, light	ler	<u>)0</u> 126.73		
3	3.58	100	41	32				structure, possibly slig dolomitised), fresh to Discontinuities are wid locally rough, fracture Apertures are tight to	htly metam slightly (sol dely to close s are plana moderately	orphosed, ution) wea ely spaced r to locally open, loca	locally sligh thered. , smooth to undulose. ally clay	ntly			
	4.91	100	64	55				smeared, commonly c incipient fractures, loc subhorizontal to local	alcite/dolor ally iron sta	nite-veine	d, frequent				
e	6.00	100	82	73		600									
	7.00	100	52	41											
		100	66	66		590									
	9.00 9.14	100 100	64 89	0 89											
	IAR					1	<u></u>	Matan	Casing	Cooled	Dicc		ATER S	TRIKE	DETAILS
Iole	e cas	sed fr	rom ().00-	3.00m			Water Strike	Casing Depth	Sealed At		Time (min)	Commer No wat		e recorde
		A T14		CT • •	10			Data	Hole	Casing	Depth to			WATE	R DETAIL
	Date		DN D		RZ Top RZ Bas	e	Ту	Date	Depth	Depth	Depth to Water	Comme	1115		

OFFF1	~
100	
20001	

	line , Co.Tipperary			DFILLH SHEET		RC0 Shee)4 et 2 of 2				
GROUND LEVEL (mOD)	21,082.02 E 66,580.48 N 129.73	RIG TYPE FLUSH	BT-440 Air/Mist	DATE D DATE L	RILLED OGGED	01/08/2024					
CLIENT ENGINEER DOBA		INCLINATION (deg) CORE DIAMETER (mm	-90	DRILLE							
Downhole Depth (m) Core Run Depth (m) T.C.R.% S.C.R.% R.Q.D.%	Fracture Spacing Z Log C Non- (mm) Log C Non- (mm) Log C C C C C C C C C C C C C C C C C C C		Description		Depth (m)	Elevation	Standpipe Detail				
10 10.15		End of Borehole	at 10.15 m		10.1	5119.58					
11											
12											
13											
14											
15											
- 16											
- 17											
18											
19											
REMARKS		<u> </u>			WA	TER ST	RIKE DETAILS				
Hole cased from 0.00-3.00)m	Water Strike	Casing Sealed Depth At				r strike recorded				
INSTALLATION DETAILS		Data	Hole Casing	Depth to	GF Commen		ATER DETAILS				
	Top RZ Base Ty	Date 02-08-24	Depth Depth 10.15 3.00	6.50			5 mins after end of				

REPORT NUMBER

0 0			NO		et 1 of 2	
CLIENT INCLINATION (deg) CORE DIAMETER (mm) Image: Stress of the stress of t	BT-440 Air/Mist	DATE DRIC	<u> </u>		7/2024 7/2024	
Image: Construct of the second sec	-90 78	DRILLED B			àSL - Jł • O' She	
0 0	ription		Depth (m)	Elevation	Standpipe Detail	SPT (N Value)
2 2.60 Weak to strong, thickly to the brown grey, fine-grained LIM structure, possibly slightly m dolomitised), fresh to locally to the brown grey, fine-grained LIM structures are yidely to locally rough, fractures are videly to locally rough, fractures are videly to structure, possibly slightly m dolomitie-veined, frequencies of the structure	-	-	0.80	126.91		
3 100 64 60 Weak to strong, thickly to this brown grey, fine-grained LIM structure, possibly slightly m dolomitised), fresh to locally locally rough, fractures are pare tight to open, locally clay calcite/dolomite-veined, frequencies 4 4.70 100 96 96 5 5.15 100 96 96 6 6.20 35 29 66 7 100 76 66 66 9 30 20 66 620 9 100 16 16 66 9 100 30 20 66 8 8.70 100 30 20 8 8.70 100 16 16 9 9.90 30 20 66 9 9.90 100 30 20 8 8.70 100 16 16 9 9.90 30 20 100 9 9.90 100 20 100 100 20 100 20 100 100 20			2 60	125.11		N = 50/2 mm (5, 8, 9, - 19, 4)
5 5.15 100 96 96 96 6 6.20 90 35 29 90 7 100 76 66 90 90 7 7.75 100 16 16 16 8 8.70 100 16 16 16 9 9.90 30 20 9 9 8 8.70 100 30 20 9 8 100 16 16 16 16 9 9.90 100 30 20 9 9 8 8.70 100 30 20 9 9 9 9.90 100 30 20 9 9 9 100 30 20 9	ESTONE (stroma etamorphosed, loc slightly (solution) closely spaced, si lanar to curviplan smeared, locally uent incipient frac	atactic cally slightly weathered. mooth to ar. Apertures tures, locally	2.00			
6.20 0 7.75 100 76 66 7.75 0 16 8.70 0 100 9.90 0 0 EEMARKS Vater Casin Dept					o o	
7 100 76 66 66 66 8 100 16 16 66 66 9 100 16 16 66 66 9 100 30 20 66 66 8 100 16 16 66 66 9 100 30 20 66 66 8 100 16 16 66 66 9 100 30 20 66 66 8 100 30 20 66 66 8 100 30 20 66 66 8 100 30 20 66 66 9 9.90 9.90 9.90 9.90 9.90 9.90 9.90 8 100 30 20 66 9.90 9.90 9.90 9.90 9.90 9.90 9.90 9.90 9.90 9.90 9.90 9.90 9.90 9.90 9.90 9.90 9.90 9.90					0 0 0 0	
B 100 16 16 16 B 8.70 100 30 20 B 100 30 20 100 B 100 100 20 100 B 100 20 100 100					0 0 0 0 0 0 0 0	
100 30 20 9.90 9.90 REMARKS tole cased from 0.00-2.60m Water Strike					0 0 0 0 0 0	
REMARKS Hole cased from 0.00-2.60m Strike Dept					0 0 0 0 0 0 0 0	
Strike Dept				I TER ST		DETAILS
	g Sealed R At N/S	lise Time To (min)		ommen Seepag		
	le Casing [) enth to $ _{-}$			WATER	DETAIL
Date Tip Depth RZ Top RZ Base Type 22-07-24 12.50 2.60 12.50 50mm SP		Depth to Water Con	nment	S		

REPORT NUMBER

ાઉદ	3L/	6													۷.	555	. /	
ONTI	RACT	L	ishee	en Mine , C	o.Tippe	erary								NO	RC		0	
	RDINA IND LI		(mOl	621,150. 666,579. D)		1		RIG TYPE FLUSH			BT-440 Air/Mist			\sim	22/0	et 2 of 1 7/2024 7/2024		
LIEN	T		OBA	-				INCLINATI		im)	Air/Mist -90 78		LED BY					
Downhole Depth (m) Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fractu Spaci Log (mm 0 ²⁵⁰	ng I I)	Non-intact Zone	Legend			Descript	tion			Depth (m)	Elevation	Standpipe Detail	SPT (N Value)	
¹⁰ 10.2	25 100		31 0					brown gre structure,	y, fine-gra possibly sl	kly to thinly ined LIMES ightly metar o locally slig	TONE (stro norphosed,	matactic , locally slig	ghtly					
11 11.4		2	0	B.	,			locally rou are tight to calcite/dol	igh, fractur o open, loc lomite-vein	videly to clos es are plans ally clay sm led, frequen lips are sub	ar to curvipl eared, loca t incipient f	lanar. Apei Illy ractures, lo	tures					
12 <u>12.5</u>	100 50	3	0		,			(continued	d)	e at 11.50 m				12.50	115.21	0 0 0		
13																		
14																		
15																		
16																		
17																		
18																		
19																		
REMA		from	0.00-	2.60m					Water	Casing	Sealed	Rise	Time		-		DETAILS	
			5.00						Strike 3.80	Depth 2.60	At N/S	To	(min)	_	mmen eepag			
									Data	Hole	Casing	Depth to	Com			NATER	DETAIL	
NSTA Dat	LLAT			ILS RZ Top F	RZ Base		Ту	De	Date 22-07-24	Hole Depth 11.50	Casing Depth 2.60	Depth to Water 4.25		iment	S		DETAIL ter end of	

REPORT NUMBER

CONTRAC	T L	ishee	en Mine ,	Co.Tippe	erary						DFII		NO	RC	06 et 1 of :	
CO-ORDIN		(mO	621,11 666,389 D)		3		RIG TYPE			BT-440	DATI			23/0	7/2024 7/2024	
CLIENT ENGINEER		DOBA	-				FLUSH INCLINATI CORE DIA		m)	Air/Mist -90 78		LED B			SL - JI	
Downhole Depth (m) Core Run Depth (m)	S.C.R.%	R.Q.D.%	Frac Spac Lc (mi 0 250	cing 9g m)	Non-intact Zone	Legend			Descript	ion			Depth (m)	Elevation	Standpipe Detail	SPT (N Value)
0 - 1 - 2 - 3 - 4 4.00 - - 4 4.00 - -	3 0 0 0 0 0	0 0 37					As returns SYMMETI as returns boulders. subrounde	f stiff brown	n gravelly sa e to coarse oarse of lim	andy cobb Gravel is	served by d	riller	4.00	126.66	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	$N = 41 \\ (5, 7, 8, 9, 11 \\ 13)$ $N = 44 \\ (7, 8, 9, 11, 11)$ $N = 50/225 \\ mm \\ (9, 9, 16, 17, 12, 5)$ $N = 50 \\ (7, 9, 12, 14, 13, 11)$ $N = 85 \\ (11, 12, 15, 16, 19, 35)$
9.83	;				529.9999		9 - -	Wator	Cooing	Socied	Pigg	Timo	WA	TER ST		DETAILS
REMARKS Hole cased INSTALLA Date 26-07-24	ı trom	0.00-	∙8.00m					Water Strike 7.50	Casing Depth 7.50	Sealed At N/S	Rise To	Time (min)	S		le	DETAILS
INSTALLA		DETA	ILS					Date	Hole Depth	Casing Depth	Depth to Water	Con	ment		WATER	DETAILS
Date 26-07-24	Tip D 18.		RZ Top 8.00	RZ Base 18.55		Typ 50mm		-								

REPORT NUMBER

	ゴゴ TRA	/:	Li	shee	n Mine , Co.Ti	operary					DFILA SHEE		0	RC06 Sheet 2 o	f 2
ROI LIEI	UNE NT		VEL	(mOI	621,117.29 E 666,389.67 N D) 127	1		RIG TYPE FLUSH INCLINATION (deg)		BT-440 Air/Mist -90	DATE DATE DRILL	DRILLEI LOGGE .ED BY	•	23/07/202 26/07/202) IGSL -	24 24 JK
		:R	D	OBA				CORE DIAMETER (I	nm)	78	LOGG	ED BY		70. O' S	nea
	Core Hun Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fracture Spacing Log (mm)	Non-intact Zone	Legend		Descripti	on			Depth (m)	Elevation Standpipe Detail	
10).40	100	100	100		570	H	Moderately weak to light to dark grey/bl	very strong, ack_fine to m	thickly to the	ninly bedde	d,			
11		100	97	97				LIMESTONE (inter predominantely arc occasional calci-sil commonly fossilier Discontinuities are	bedded and in illcaeous/mut tite sandy lime bus), fresh to widely to clos	nterlaminat ddy limesto estone lens locally sligl ely spaced	eed, one with ses & layers htly weathe I, smooth to	red.			>
12		100	94	94		540.000		locally rough, fractu Apertures are tight clay/gravel-filled (a stained. Dips are s (continued)	ires are plana to moderately t 8.81-9.05m)	r to curvipl open, loca , locally slig	lanare. ally ghtly iron-o:				>
	2.65 2.80	100	93	93			┢┯┷								
13	8.80	100	98	98										0	
14		100	99	99											5
15	5.38_ 5.95_	100	95	84											
16 17	'.05_	100	95	92		639.999	99999999							0	>
	8.00	100	99	92		609.999	99999999								
18		100	96	96				End of Boreho	le at 18.55 m			18	<u>8.55</u> 1	• •	
19									2 · 0.00 m						
REMA		(6)													
			om ().00-8	8.00m			Water		Sealed	Rise	Time		ER STRIKE	
								Strike 7.50	Depth 7.50	At N/S	To	<u>(min)</u>		epage	
												1		UNDWATE	R DETAII
	ALL ate			ETAI	LS RZ Top RZ Ba	200	Ту	Date 26-07-24	Hole Depth 18.55	Casing Depth 8.00	Depth to Water 7.65	Comm		corded 5 mins	
		- I I	10110	unthi	BZ IOD IBZ B		11/0	L 26 07 2							

GEOTECHNICAL CORE LOG RECORD

REPORT NUMBER

255517

Define the second secon	ED SED Y	20/0 21/0	07 et 1 of 07/202 07/202 D7/20	4 4 JK
DATE DRIVE DATE LOGO RILLED B OGGED B OGGED B	Y Y Y)7/202)7/202 GSL - C O' Sh	4 4 JK hea
OGGED B by driller by sandy	Y		O' SH	hea
bly sandy	Depth (m)	Elevation	Standpipe Detail	T (N Value)
bly sandy			1	SP SP
	1 50	125.21	1	
- ,	1.50	, 120.21		N = 42 (5, 11, 9 11, 13
	3.00) <u>123.71</u>	1	N = 4 (7, 7, 12 13, 11
oy driller oly				N = 50/ ⁻ mm (5, 6, 18, 11)
TONE	5.90	120.81	1	
lierous), oth to Apertures				
	WA	TER S	 TRIKE	DETAILS
) Co	ommen	nts	
th to			WATE	R DETAIL
ater Cor	mmen	ເຮ		
	(min	4.50 by driller by cobbly 5.00 5.90 ded, light STONE ci-siltite lierous), bth to Apertures J, very izontal to WA Time (min) C STOR C STOR C State C State C State C State C State S	by driller dy cobbly by driller oly 5.00 121.7 5.90 120.8 5.90 120.8 5.90 120.8 5.90 120.8 5.90 120.8 5.90 120.8 120.8 5.90 120.8 5.90 120.8 5.	dý cobbly 4.50 122.21 by driller 5.00 121.71 5.90 120.81 ded, light STONE ci-siltite lierous), bth to Apertures J, very izontal to WATER STRIKE Time (min) Comments Seepage GROUNDWATEI

GEOTECHNICAL CORE LOG RECORD

REPORT NUMBER

255517

	/	Li	ishee	n Mine , Co.Tipp	erarv				DRILA.HO	LE NO	RC)7	
O-OR	rdina	TES		621,259.03 E 666,518.46 N			RIG TYPE	BT-440	DATE LO	~ X \	Shee 20/0	et 2 of 7/2024	
ROUI	ND LE T	VEL	(m0[D) 126.7	1		FLUSH INCLINATION (deg)	Air/Mist -90	DATE LOO DRILLED	<u> </u>	<u> </u>	7/2024 iSL - JI	
NGIN	EER	D	OBA		1	1	CORE DIAMETER (mm)	78	LOGGED	BY		O' Sh	ea
Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fracture Spacing Log (mm) 0 ²⁵⁰ 500	Non-intact Zone	Legend	Descr	iption		Depth (m)	Elevation	Standpipe Detail	SPT (N Value)
10.3	30						Medium strong to very strong,	thickly to this	nly bedded, ligh	t			
11.0	100	93	86				to dark grey/black, fine to mec (interbedded and interlaminate argillcaeous/muddy limestone sandy limestone lenses & laye fresh to locally slightly weathe	ed, predomin with occasio ers, commonl	antely onal calci-siltite				
12.0	100	93	93				Discontinuities are widely to c locally rough, fractures are pla are tight to moderately open, I	losely spaced inar to curvip ocally clay-si	lanar. Aperture: meared, very				
	100	100	95		580		locally slightly iron-oxide stain locally 30° & 40°. (continued)	ea. Dips are	subnorizontal to				
12.5	58 9500	100	89										
3	100		97										
4 14.1													
5 <u>15.1</u>	100	99	93							15.10	0111.61		
							End of Borehole at 15.10	m					
6													
7													
8													
9													
EMA													DETAILS
	-	rom (0.00-	5.00m			Water Casing	Sealed	Rise Tin	ie Co	ommen		
							StrikeDepth3.003.00	At N/S	<u>To (mi</u>	n)	Seepag		
										GR		VATER	
ISTAI	LLATI	ם אס	ΕΤΔΙ	LS			Date Hole Dept	3	Depth to Water C	omment	s		

GEOTECHNICAL CORE LOG RECORD

REPORT NUMBER

255517

CONTR CO-OF GROUI CLIEN ENGIN	rdina Ind Li	TES		en Mine , Co.Tippe 621,334.77 E 666,486.83 N D) 126.53			RIG TYPE FLUSH INCLINATIO CORE DIAM		m)	BT-440 Air/Mist -90 78	DATE	LHOLE DRILL LOGG LED BY GED BY	ED ED	19/0 20/0	08 et 1 of 7/2024 7/2024 SL - Jl	k K
Downhole Depth (m) Core Run Depth (m)		S.C.R.%	R.Q.D.%	Fracture Spacing Log (mm) 0 ²⁵⁰ 500	Non-intact Zone	Legend			Descript	ion			Depth (m)	Elevation	Standpipe Detail	SPT (N Value)
0 1 1.50 2 2.20 3 3 3.80 4.12 3 4.92 5.72 6 6.80 5.72 6 6.80 7 8 8.00 9 9 9.60 9.60	100 100 2 100 2 100 5 100 100 100 100 8 100	80 100 93 98 92 91	80 64 100 93 87 72 91 81				SYMMETR as returns of light to dark LIMESTON predominar occasional commonly f Discontinuit locally roug are tight to locally sligh locally 30° 8	weak to grey/bla grey/bla E (interbe tely argil calci-siltit ossilierou ties are w h, fractur moderate tly iron-o:	very strong, ck, fine to n edded and i lcaeous/mu e sandy lim us), fresh to idely to clos es are plan; ly open, loc	thickly to the nedium-gra nterlamina ddy limesto estone lens locally slig sely spaceo ar to curvip ally clay-sr	ninly beddo ined ed, one with ses & layer htly weatho I, smooth t lanar. Ape neared, ve	ed, rs, ered. o rtures ry	1.50	125.03		N = 50/0 m (25, 50)
REMAI Hole ca		from (0.00-	1.50m				Water Strike 4.80	Casing Depth 1.50	Sealed At N/S	Rise To	Time (min)	Co	TER ST ommen Geepag	ts	DETAILS
NSTA Dat				LS RZ Top RZ Base				Date	Hole	Casing Depth	Depth to Water) Com	GRO		VATEF	DETAILS

/	A	~													R	EPOR1		BER
	ર ઉદ	لمر عاد			C	GEOTI	ECH	INIC	CAL COI	RE LOG	RECO	RD				2	555 ⁻	17
CC	ONTR	ACT	L	ishee	en Mine ,	Co.Tippe	erary						DFIL SHE	L HOLE	NO	RC()8 et 2 of :	2
	D-ORI			(mOl	621,33 666,48	4.77 E 6.83 N 126.53	2		RIG TYPE			BT-440	DATE	E DRILL	< \	19/0	7/2024 7/2024	Ļ
CL		•			-	120.5	5		FLUSH INCLINATI	ON (deg) METER (mr	-	Air/Mist -90 78	DRIL	LED B	<u>,</u> (iSL - JI O' Sh	ĸ
							Ð				n)	78		GEDB			50	
Downhole Depth (m)	Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Frac Spa Lc (m	cing og	Non-intact Zone	p			Descript	ion			(m) r	tion	Standpipe Detail	SPT (N Value)
- 10					0 250) 500	Non-i	Legend							Depth (m)	Elevation	o ∐ Stanc	SPT
	,	100	95	95			709.9999	9999999	9								0	
	11.05	5			E												° 0	
- 11		100	91	91													°	
Ē	11.70					_		╞╌╧	End	of Borehole	at 11.70 m	1			11.70	114.83	∘ ∐∘	
- 12	2																	
- 13	5																	
- 14	L																	
-																		
- 15	5																	
-																		
- 16	5																	
-																		
- 17	,																	
-																		
- 18	3																	
-																		
- 19	9																	
25/9/24	EMAR			L	1			I				<u> </u>			WA	TER ST	RIKE I	DETAILS
HC	ole ca	sed f	rom	0.00-	1.50m					Water Strike	Casing Depth	Sealed At	Rise To	Time (min)		ommen		
25517.GPJ IGSL.GDT 25/9/24										4.80	1.50	N/S				Seepag	e	
25517.															GR	OUNDV	VATER	DETAILS
	STAL									Date	Hole Depth	Casing Depth	Depth to Water	Com	nment			
IGSL RC FI 10M	Date 0-07-2		<u>Гір D</u> 11.7		RZ Top 1.50	RZ Base 11.70		Ту _l 50mn		20-07-24	11.70	1.50	5.70			recorded	5 mins af	ter end of

<u>RC01 - Box 2 of 2 - 10.50-12.50m</u>

PECEIN <u>RC02 - Box 1 of 3 - 2.80-5.80m</u> Re 2 T neen Mari R. Z 80 ÷ 5.80m 51/#3/24 1-3 E 6 md innte 111 min 2.8 4.30

<u>RC02 - Box 2 of 3 - 5.80-8.80m</u>

<u>RC03 - Box 1 of 2 - 3.00-8.50m</u>

RC03 - Box 2 of 2 - 8.50-10.50m

RC04 - Box 1 of 3 - 3.00-6.00m

<u>RC04 - Box 3 of 3 - 9.00-10.15m</u>

<u>RC05 - Box 2 of 4 - 5.15-7.75m</u>

<u>RC05 - Box 4 of 4 - 10.25-12.50m</u>

<u>RC06 - Box 1 of 5 - 4.00-9.83m</u>

<u>RC06 - Box 2 of 5 - 9.83-12.65m</u>

<u>RC06 - Box 4 of 5 - 15.38-18.00m</u>

<u>RC07 - Box 1 of 4 - 5.00-7.70m</u>

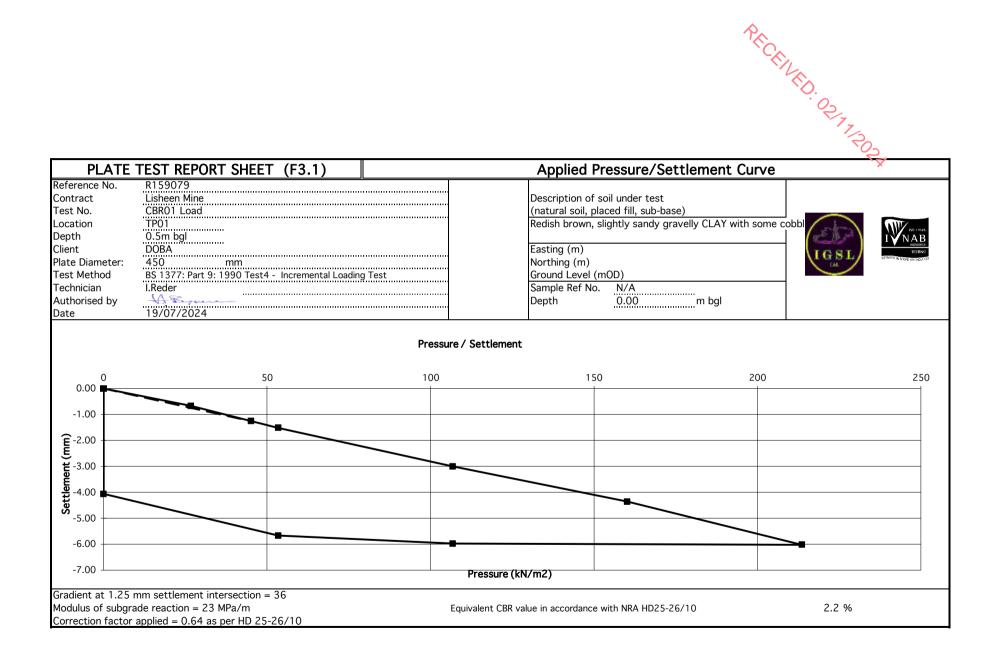
<u>RC07 - Box 3 of 4 - 10.30-12.95m</u>

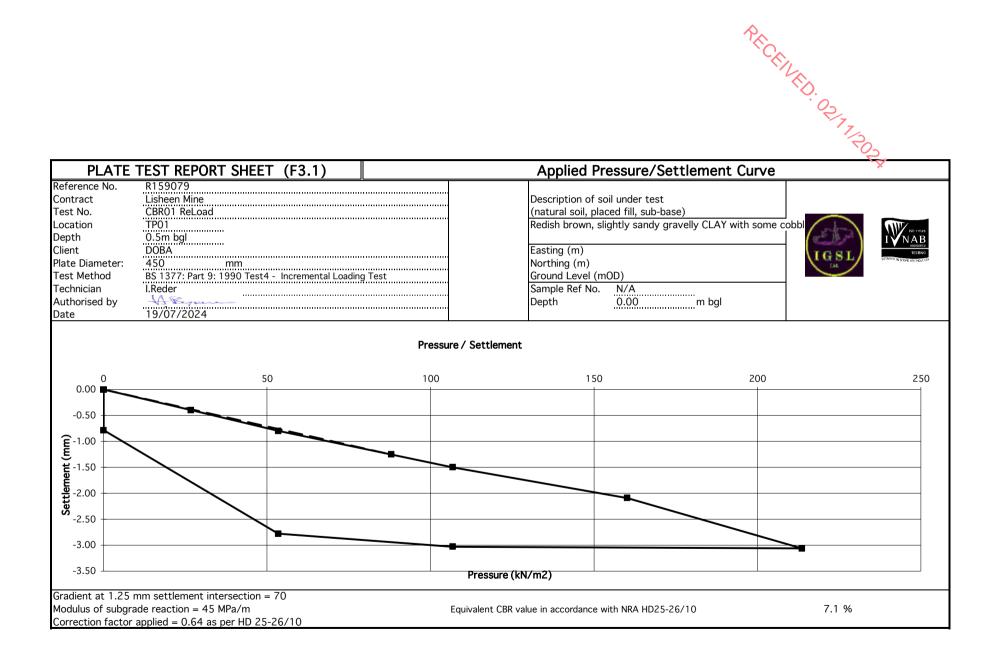
RECEIL <u>RC07 - Box 4 of 4 - 12.95-15.10m</u> 6 4 5 7 8 9 2 2 3 านในแข้นเป็นแข้นครื่าม -LISH 0 13 12.95-Bax 4 ft 0 54 14:19 المالديد المجاجة .

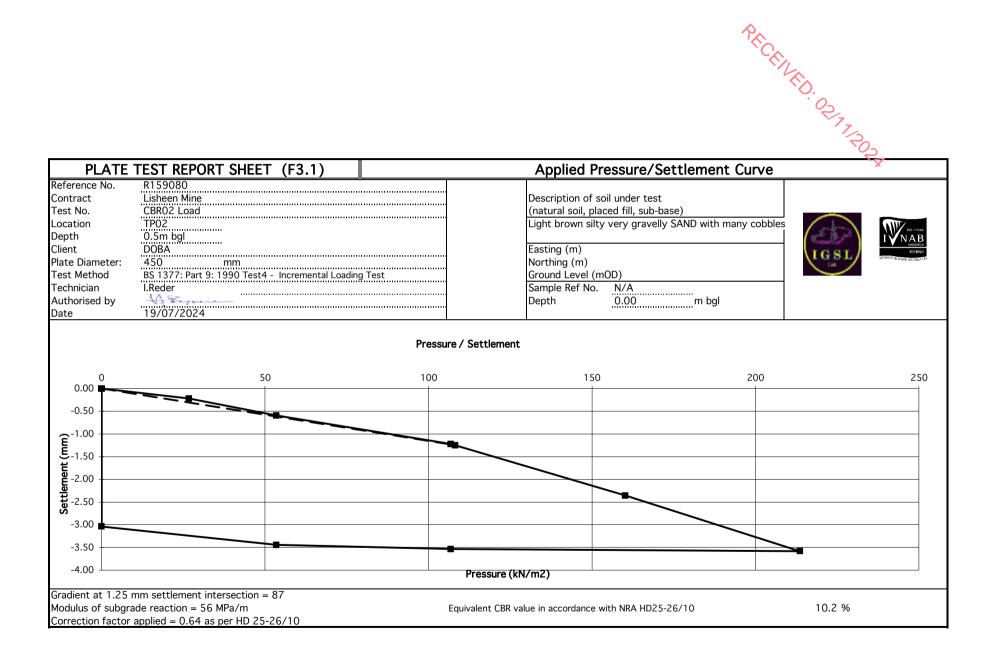
<u>RC08 - Box 1 of 4 - 1.50-4.12m</u>

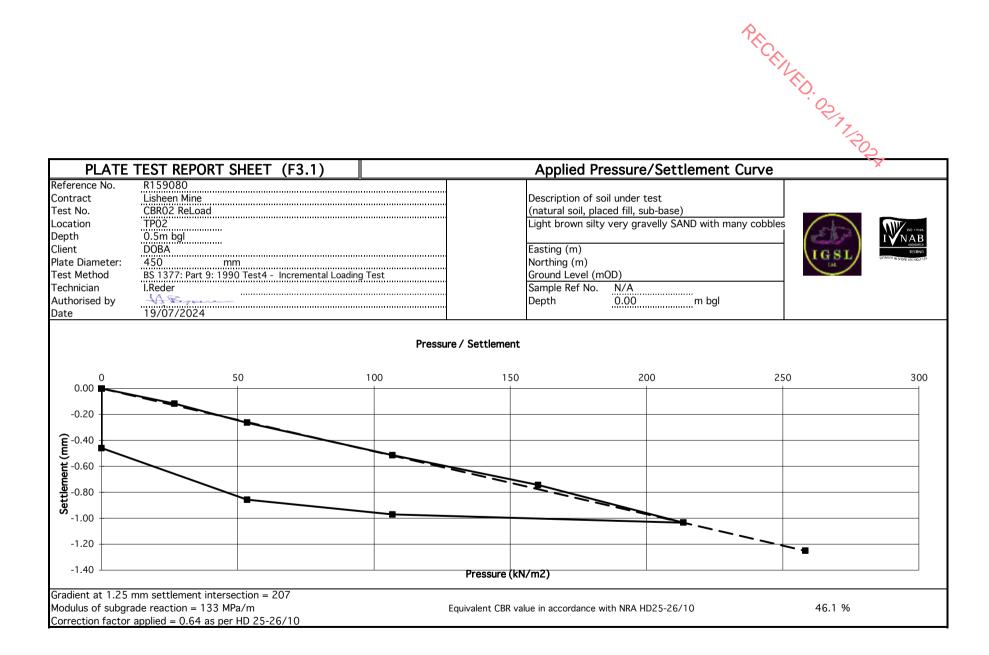
PECEI <u>RC08 - Box 2 of 4 - 4.12-6.80m</u> 90 8 4 6 7 5 2 З AmimAmimAmin unum huui LISHEEN M 4.62-19/07/ Bortz 20 0 4.95 1.1 5.72 6.80 111**-1 1110 - ---**

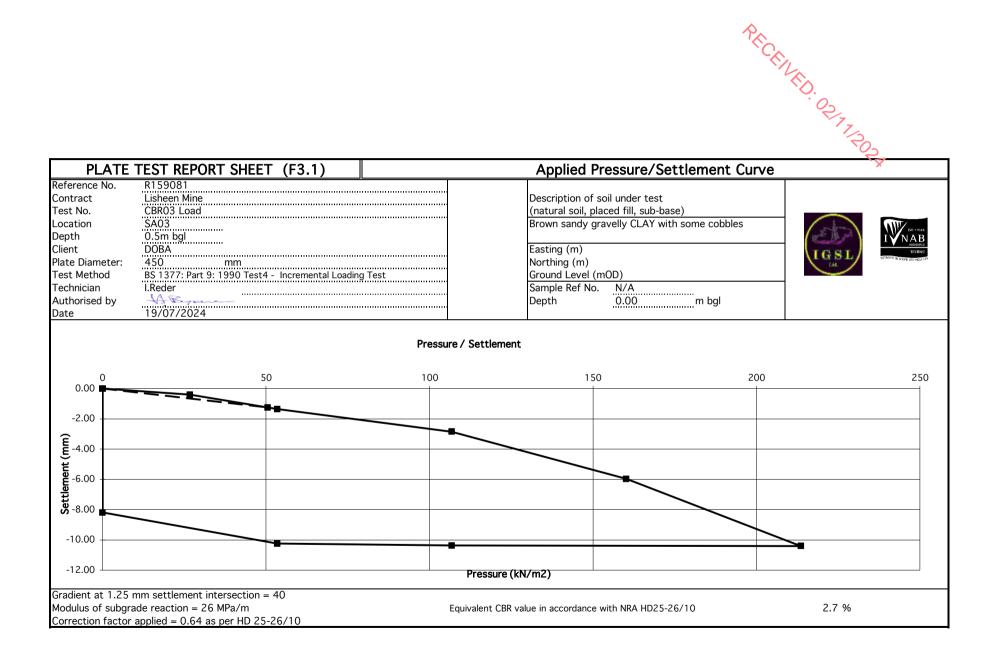
<u>RC08 - Box 3 of 4 - 6.80-9.60m</u>

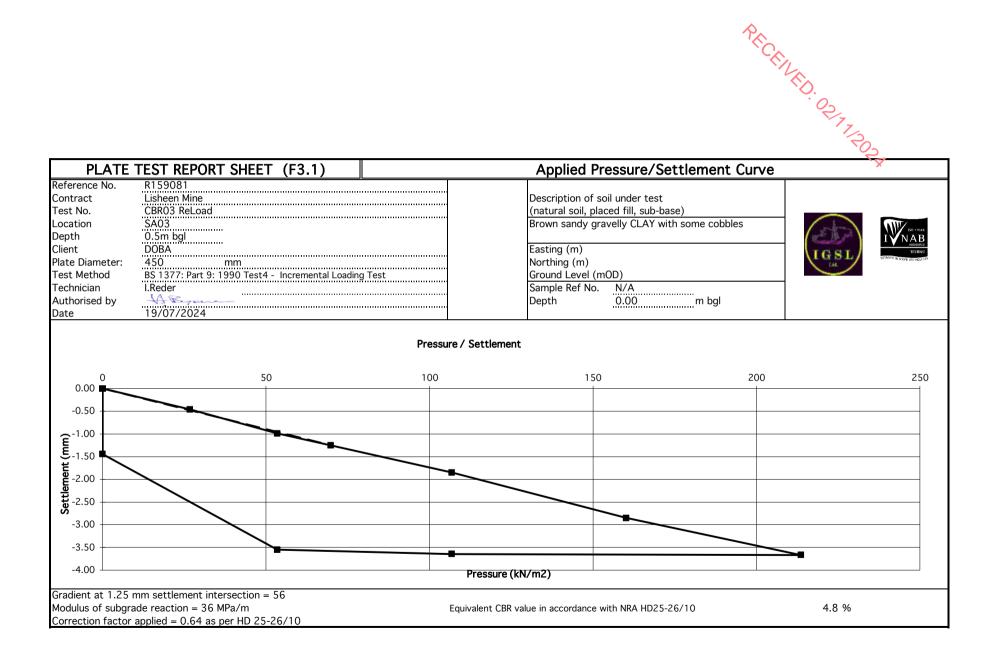


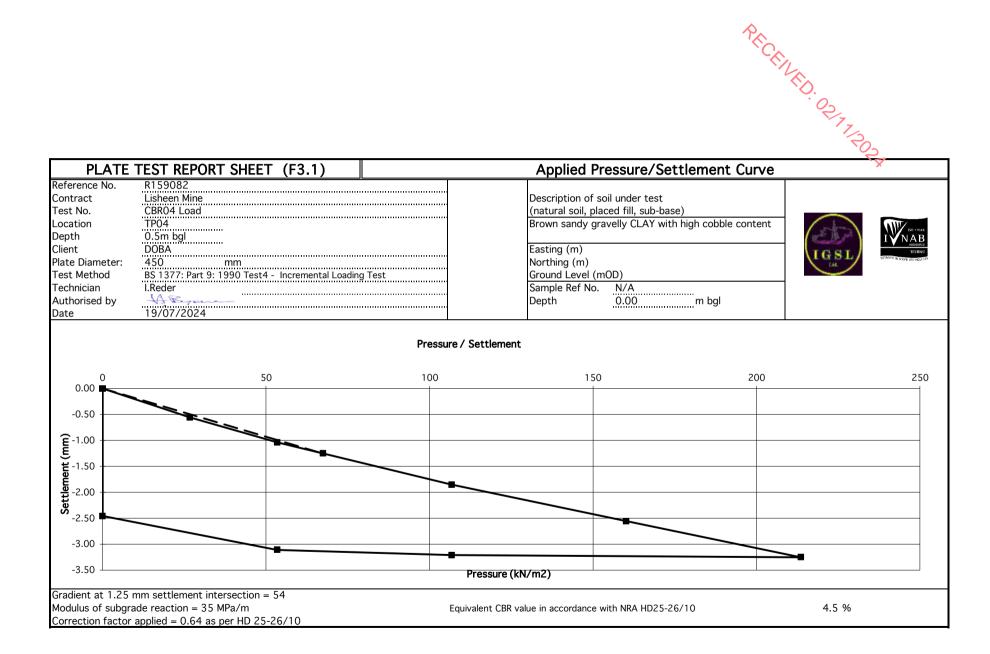


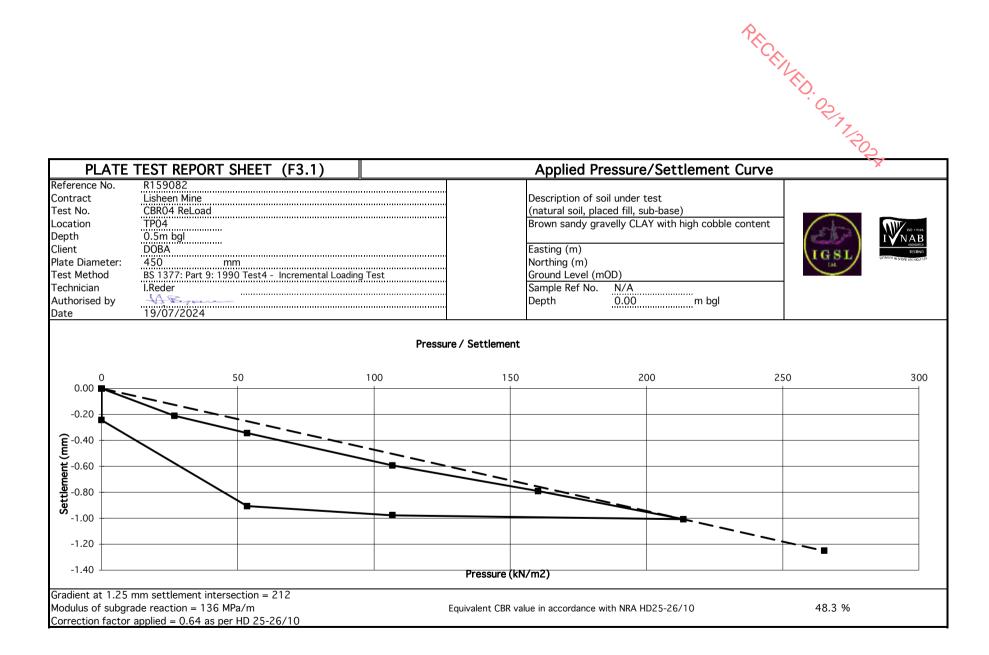

Appendix 4

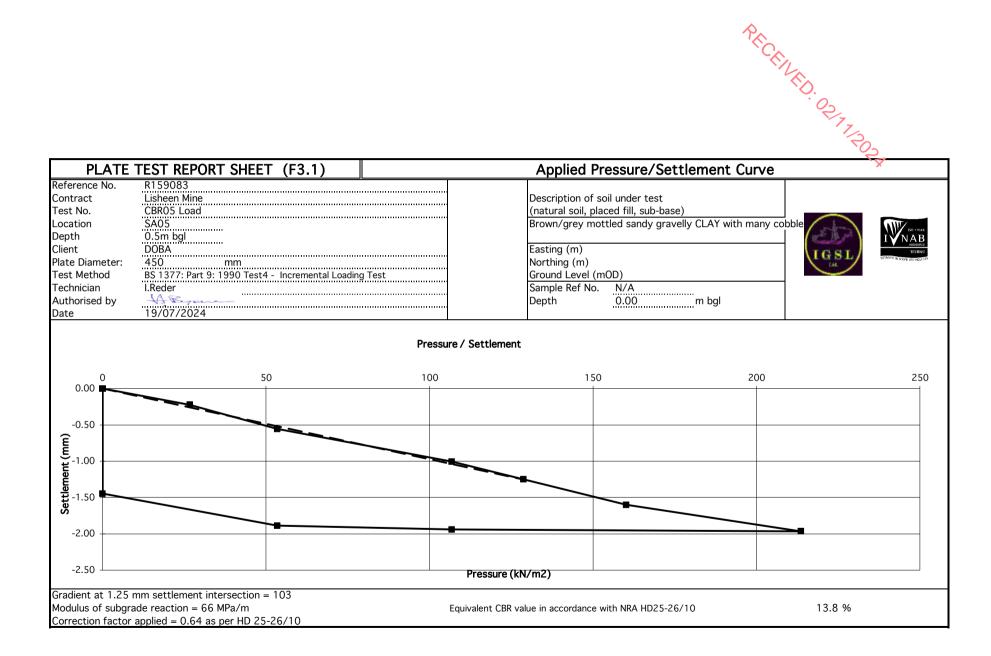



Plate Load Test Records

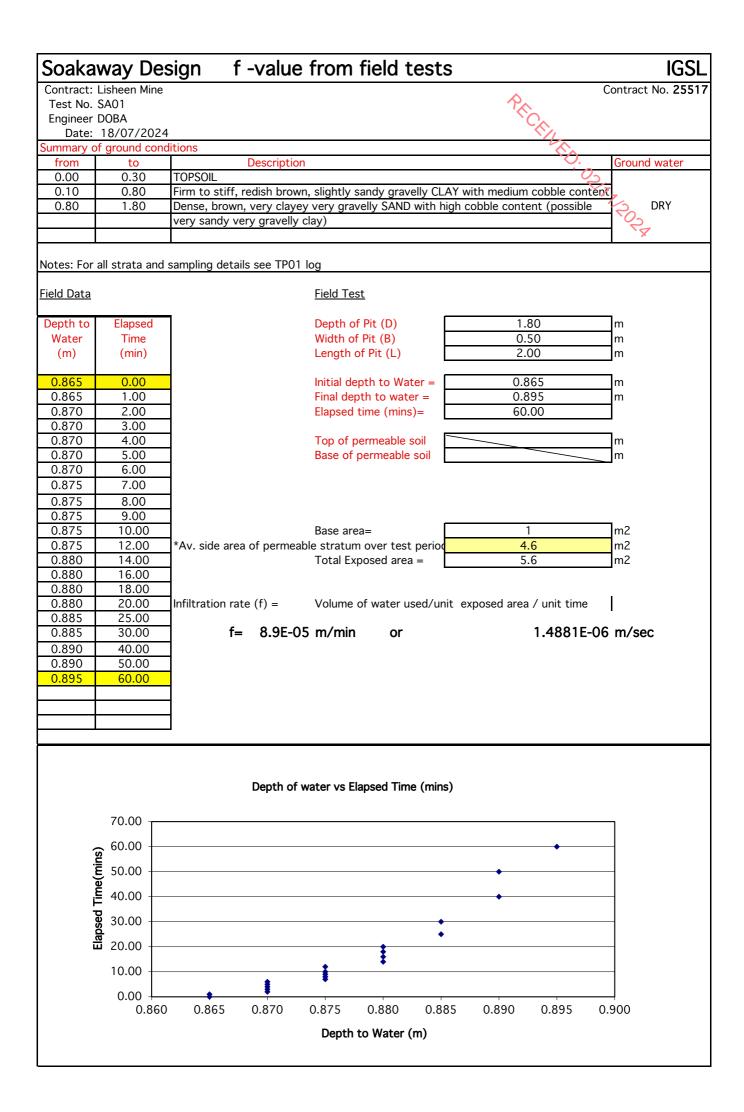




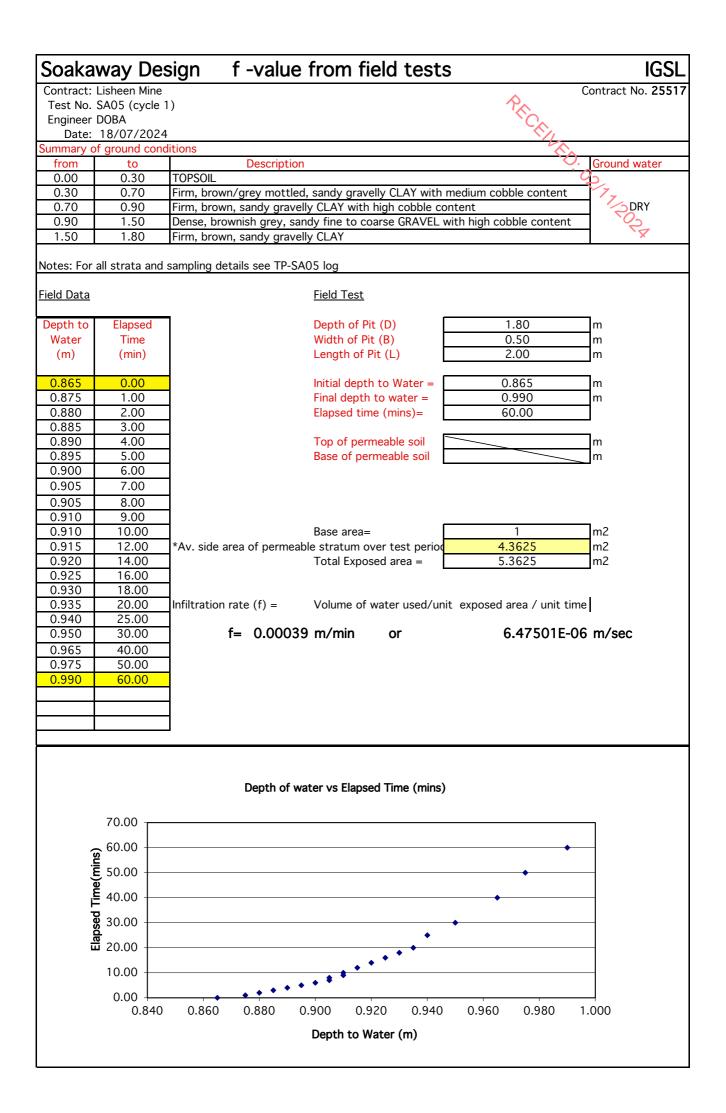


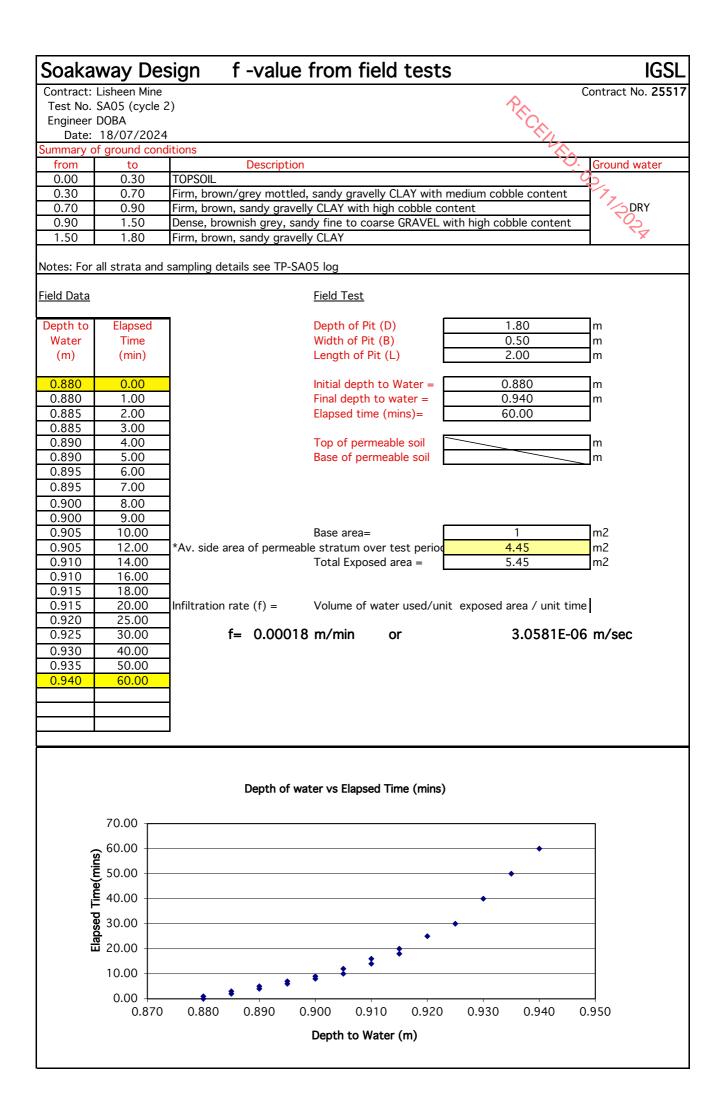






Appendix 5


Soakaway Test Records



	way Des	sign f -value from field tests	IGS
	Lisheen Mine		Contract No. 255
est No.			The second se
ngineer			
	18/07/2024		
-	of ground cond		
from	to	Description	
0.00	0.50	MADE GROUND (brown silty sandy gravel, cobbles, organic pi	
0.50	1.50	Dense, yellowish light brown, silty/clayey very gravelly SAND	
		very gravelly silty CLAY)	DRY
tes: For	all strata and	sampling details see TP02 log	
<u>ld Data</u>		<u>Field Test</u>	
epth to	Elapsed	Depth of Pit (D)	1.50 m
Nater	Time	Width of Pit (B)	0.50 m
(m)	(min)	Length of Pit (L)	1.50 m
).675	0.00	Initial depth to Water =	0.675 m
).675	1.00	Final depth to water =	0.680 m
).675	2.00	Elapsed time (mins)=	60.00
).675	3.00		
).675	4.00	Top of permeable soil	m
).675	5.00	Base of permeable soil	m
).675	6.00		
).675	7.00		
0.680	8.00		
0.680	9.00]	
0.680	10.00	Base area=	0.75 m2
0.680	12.00	*Av. side area of permeable stratum over test period	3.29 m2
0.680	14.00	Total Exposed area =	4.04 m2
0.680	16.00		
0.680	18.00	1	
0.680	20.00	Infiltration rate (f) = Volume of water used/unit expos	sed area / unit time
0.680	25.00		^ <i>i</i>
0.680	30.00	f= 0 m/min or	0 m/sec
0.680	40.00		
).680	50.00	Negligible fall in water recorded during test	
).680	60.00		
		4	
		4	
		1	
		Depth of water vs Elapsed Time (mins)	
	70.00		
í.	60.00 50.00 40.00 30.00 20.00		•
i.	E 50.00 +		_
jor			
Ě	∎ 40.00 ┼──		
י ז			.
	<u>s</u> su.uu +		
	₿ 20.00 ↓		
_			₹ I
	10.00	▲	ŧ
	0.00	0.675 0.676 0.677 0.678 0.679	0.680 0.681
	0.00 0.674	0.675 0.676 0.677 0.678 0.679	0.680 0.681
		0.675 0.676 0.677 0.678 0.679 Depth to Water (m)	0.680 0.681

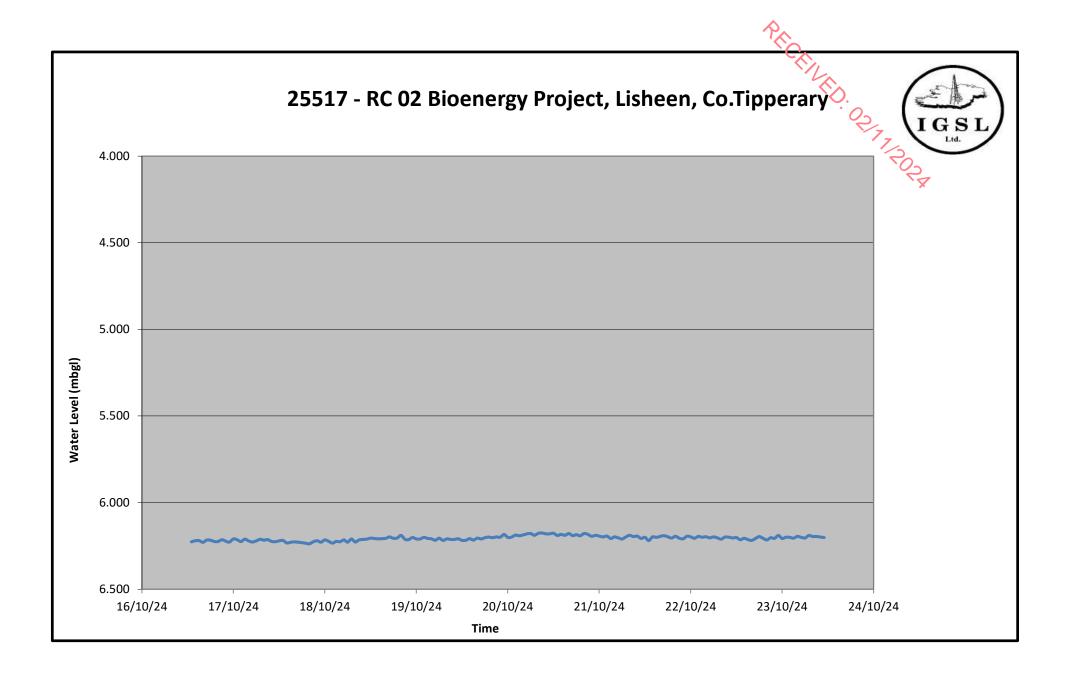
loaka	way Des	sign f -value from field tests	IG
	Lisheen Mine		Contract No. 25
Test No.			Contract No. 25
Engineer			°C _A
	18/07/2024		<u> </u>
immary c	of ground cond		
from	to	Description	Ground water
0.00	0.35	TOPSOIL	
0.35	1.40	Firm to stiff, brown, sandy gravelly CLAY with medium col	oble content
1.40	1.90	Firm, yellowish light brown to brown, very sandy very grav	velly slightly silty CLAY
		with high cobble content	22
			×
otes: For	all strata and	sampling details see TP-SA03 log	
eld Data		Field Test	
<u>iu Data</u>			
epth to	Elapsed	Depth of Pit (D)	1.90 m
Water	Time	Width of Pit (B)	0.50 m
(m)	(min)	Length of Pit (L)	2.00 m
0.890	0.00	Initial depth to Water =	0.890 m
0.890	1.00	Final depth to water =	0.925 m
0.890	2.00	Elapsed time (mins)=	60.00
).895	3.00		
0.895	4.00	Top of permeable soil	m
).895	5.00	Base of permeable soil	m
0.895	6.00		
0.895	7.00		
0.900	8.00	1	
).900	9.00	1	
).900	10.00	Base area=	1 m2
0.900	12.00	*Av. side area of permeable stratum over test period	4.9625 m2
).900).905	12.00		
).905).905	14.00	Total Exposed area =	5.9625 m2
).905).905	16.00	4	
0.905 0.910	20.00	Infiltration rate (f) = Volume of water used/unit ex	norod area / unit time
0.910 0.910	25.00	Infiltration rate (f) = Volume of water used/unit ex	poseu area / unit unie
D.910 D.915	30.00	f= 9.8E-05 m/min or	1.63056E-06 m/sec
			1.030302-00 11/360
0.915 0.920	40.00 50.00		
).920).925			
J.925	60.00		
		J	
		Depth of water vs Elapsed Time (mins)	
		Depth of water vs Liapsed Time (Times)	
	70.00		
	60.00		
	50.00		•
			•
Terier Second	50.00		•
Latin Journey	50.00		•
(control of the second s	50.00		•
(50.00	• • •	•
Venine	60.00 50.00 40.00 30.00 20.00	• • •	•
Classical Transformed	50.00 50.00 40.00 30.00 20.00 10.00		•
(adia) and Theorem	50.00 40.00 30.00 20.00 10.00		
(color/construction)	50.00 40.00 30.00 20.00 10.00 0.00		
Veries/energy heread	50.00 40.00 30.00 20.00 10.00	0.890 0.895 0.900 0.905 0.910 0.915	0.920 0.925 0.930
	50.00 40.00 30.00 20.00 10.00 0.00	0.890 0.895 0.900 0.905 0.910 0.915 Depth to Water (m)	0.920 0.925 0.930

	way Des	sign f -value from field tests	IGS
	Lisheen Mine	itions Description	Contract No. 255
est No.			
ingineer			
	18/07/2024 of ground cond	itione	
from		Description	Ground water
0.00	to 0.30	TOPSOIL	
0.30	0.90	Stiff, brown, sandy gravelly CLAY with high cobbles content	
0.90	1.50	Firm to stiff, brown, sandy gravelly CLAY with medium cobble content	
			X
tes: For	all strata and	sampling details see TPO4 log	
ld Data		<u>Field Test</u>	
	Flama I		
epth to	Elapsed	Depth of Pit (D) 1.50	m
Water	Time (min)	Width of Pit (B)0.70Length of Pit (L)1.70	m
(m)	(min)	Length of Pit (L) 1.70	m
).700	0.00	Initial depth to Water = 0.70	m
).700).700	1.00	Final depth to water = 0.705	m
).700	2.00	Elapsed time (mins)= 60.00	———————————————————————————————————————
).705	3.00		
0.705	4.00	Top of permeable soil	m
).705	5.00	Base of permeable soil	m
0.705	6.00		
).705	7.00		
).705	8.00		
).705	9.00		
).705	10.00	Base area= 1.19	m2
).705	12.00	*Av. side area of permeable stratum over test period 3.828	m2
0.705	14.00	Total Exposed area = 5.018	m2
0.705	16.00		
0.705	18.00		·· ·· I
0.705	20.00	Infiltration rate (f) = Volume of water used/unit exposed area / ur	nt time
0.705 0.705	25.00 30.00	f= 0 m/min or	0 m/sec
0.705 0.705	40.00		0 11/ 366
).705).705	50.00	Negligible fall in water recorded during test	
).705	60.00	Hogingione fail in water recorded during test	
	00.00		
		Depth of water vs Elapsed Time (mins)	
	70.00		
	70.00		
1	ê 60.00	•	
ļ	50.00	•	
Ľ	40.00	•	
7	3 0.00	•	
	60.00 50.00 40.00 30.00 20.00		
-	10.00		
	0.00		
		0.700 0.701 0.702 0.703 0.704 0.705	0.706
	0.00 +	0.700 0.701 0.702 0.703 0.704 0.705 Depth to Water (m)	0.706

Appendix 6

Groundwater Monitoring & Data Logger Records

Project No. 25517			G	ROUNDWATER	MONITORING D	ATA SHEET		C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.	(I)
Project: Bioen Engineer: DO		, Lisheen, Co.Tipp	berary					TO.	IGSL
Exploratory Hole No.	Hole Depth (m bgl)	Response Zone Top (m bgl)	Response Zone Base (m bgl)	Groundwater level (m bgl) 16.10.24	Groundwater level (m bgl) 23.10.24	Groundwater level (m bgl) -	Groundwater level (m bgl) -	Groundwater lever (m bgl) -	Groundwater le
RC 02	10.20	1.00	10.20	6.22	6.20				
RC 03	8.50	2.00	10.50	3.17	3.10				
RC 05	12.50	2.60	12.50	3.76	3.70				
RC 06	18.55	8.00	18.55	3.38	3.28				
RC 08	11.70	1.50	11.70	1.37	1.71				
Remarks:	Water levels me	easured using electric d	ipmeter	<u> </u>	<u> </u>			<u> </u>	
									Shee

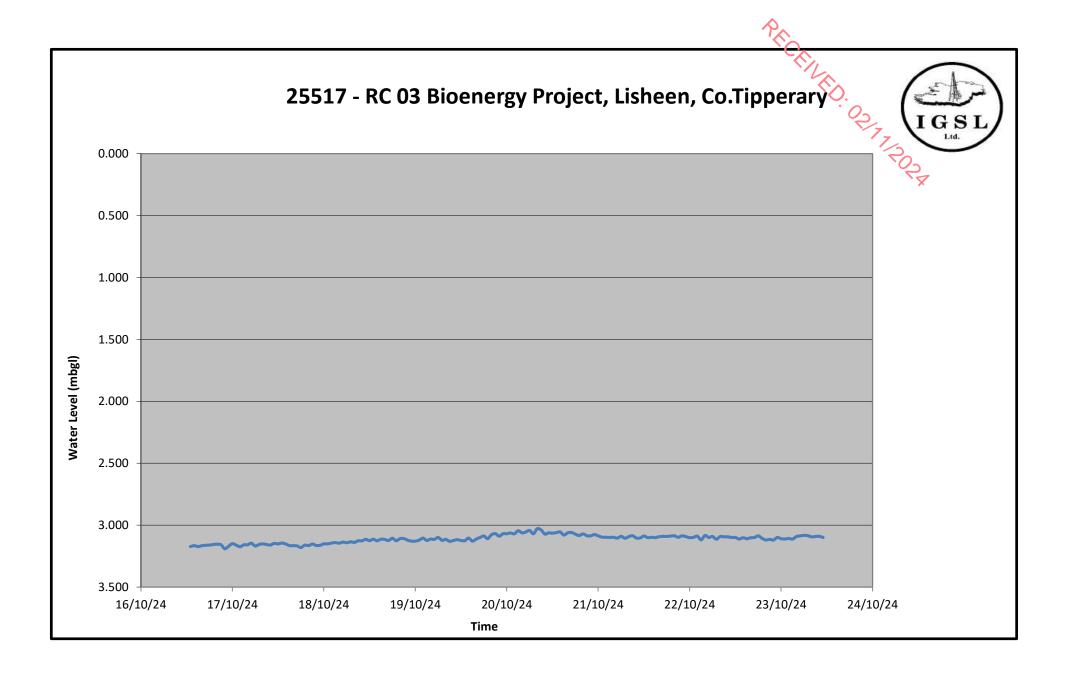

Project.	Bioenergy Project, Lisheen, Co.Tippe	erary		P_	
Project No.	25517			· ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	(star
Engineer .	DOBA			Rec e	
Borehole No.	RC02				LICSI
Serial No.	430436				
String Length	10.1				
	DATE	BAROMETRIC PRESSURE (m)	LOGGER READINGS (m)	TEMPERATURE (c)	WATER LEVEL (m bgl)
1	16/10/2024 13:00	10.003649	13.827	11.032	6.727
2	16/10/2024 14:00	10.003649	13.833	11.032	6.221
3	16/10/2024 15:00	10.003649	13.834	10.980	6.220
4	16/10/2024 16:00	10.003649	13.824	10.980	6.230
5	16/10/2024 17:00	10.003649	13.837	10.928	6.217
6	16/10/2024 18:00	10.003649	13.836	10.928	6.218
7	16/10/2024 19:00	10.013847	13.839	10.928	6.225
8	16/10/2024 20:00	10.013847	13.839	10.928	6.225
9	16/10/2024 21:00	10.013847	13.849	10.928	6.215
10	16/10/2024 22:00	10.024044	13.851	10.928	6.223
11	16/10/2024 23:00	10.024044	13.846	10.928	6.228
12	17/10/2024 00:00	10.024044	13.864	10.928	6.210
13	17/10/2024 01:00	10.024044	13.859	10.928	6.215
14	17/10/2024 02:00	10.034242	13.859	10.928	6.225
15	17/10/2024 03:00	10.024044	13.863	10.928	6.211
16	17/10/2024 04:00	10.024044	13.853	10.928	6.221
17	17/10/2024 05:00	10.034242	13.856	10.928	6.228
18	17/10/2024 06:00	10.034242	13.863	10.928	6.221
19	17/10/2024 07:00	10.034242	13.872	10.928	6.212
20	17/10/2024 08:00	10.044439	13.877	10.928	6.217
21	17/10/2024 09:00	10.054636	13.891	10.928	6.214
22	17/10/2024 10:00	10.064834	13.891	10.928	6.224
23	17/10/2024 11:00	10.075031	13.899	10.928	6.226
24	17/10/2024 12:00	10.085229	13.914	10.980	6.221
25	17/10/2024 13:00	10.095426	13.927	10.928	6.218
26	17/10/2024 14:00	10.105623	13.922	10.980	6.234
27	17/10/2024 15:00	10.115821	13.936	10.928	6.230
28	17/10/2024 16:00	10.126018	13.949	10.980	6.227
29	17/10/2024 17:00	10.136216	13.957	10.928	6.229
30	17/10/2024 18:00	10.146413	13.965	10.928	6.231
31	17/10/2024 19:00	10.156610	13.971	10.928	6.236
32	17/10/2024 20:00	10.156610	13.969	10.928	6.238
33	17/10/2024 21:00	10.156610	13.981	10.876	6.226
34	17/10/2024 22:00	10.156610	13.986	10.980	6.221

Project.	Bioenergy Project, Lisheen, Co.Tippe	erary		P_	
Project No.	25517			· ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	(star
Engineer .	DOBA			Rec e	
Borehole No.	RC02				LICSI
Serial No.	430436				
String Length	10.1				
	DATE	BAROMETRIC PRESSURE (m)	LOGGER READINGS (m)	TEMPERATURE (c)	WATER LEVEL (m bgl)
35	17/10/2024 23:00	10.166808	13.988	10.980	6.729
36	18/10/2024 00:00	10.146413	13.981	10.928	6.215
37	18/10/2024 01:00	10.156610	13.983	10.980	6.224
38	18/10/2024 02:00	10.156610	13.972	10.980	6.235
39	18/10/2024 03:00	10.136216	13.962	10.980	6.224
40	18/10/2024 04:00	10.136216	13.960	10.928	6.226
41	18/10/2024 05:00	10.126018	13.960	10.928	6.216
42	18/10/2024 06:00	10.126018	13.947	10.928	6.229
43	18/10/2024 07:00	10.105623	13.945	10.928	6.211
44	18/10/2024 08:00	10.105623	13.928	10.980	6.228
45	18/10/2024 09:00	10.095426	13.930	10.876	6.215
46	18/10/2024 10:00	10.085229	13.922	10.980	6.213
47	18/10/2024 11:00	10.075031	13.914	10.928	6.211
48	18/10/2024 12:00	10.054636	13.899	10.928	6.206
49	18/10/2024 13:00	10.054636	13.897	10.928	6.208
50	18/10/2024 14:00	10.044439	13.885	10.876	6.209
51	18/10/2024 15:00	10.044439	13.886	10.928	6.208
52	18/10/2024 16:00	10.044439	13.888	10.876	6.206
53	18/10/2024 17:00	10.044439	13.896	11.032	6.198
54	18/10/2024 18:00	10.054636	13.898	10.876	6.207
55	18/10/2024 19:00	10.054636	13.900	11.032	6.205
56	18/10/2024 20:00	10.054636	13.915	11.032	6.190
57	18/10/2024 21:00	10.064834	13.903	11.032	6.212
58	18/10/2024 22:00	10.075031	13.911	10.980	6.214
59	18/10/2024 23:00	10.075031	13.923	11.032	6.202
60	19/10/2024 00:00	10.075031	13.915	10.824	6.210
61	19/10/2024 01:00	10.085229	13.925	11.032	6.210
62	19/10/2024 02:00	10.085229	13.934	10.824	6.201
63	19/10/2024 03:00	10.085229	13.928	10.824	6.207
64	19/10/2024 04:00	10.095426	13.936	10.928	6.209
65	19/10/2024 05:00	10.105623	13.938	10.928	6.218
66	19/10/2024 06:00	10.105623	13.950	10.980	6.206
67	19/10/2024 07:00	10.115821	13.947	11.032	6.219
68	19/10/2024 08:00	10.115821	13.956	11.032	6.210

Project.	Bioenergy Project, Lisheen, Co.Tippe	erary		Ŷ.	(
Project No.	25517				and the second s
Engineer .	DOBA			RECE	
Borehole No.	RC02				ICSI
Serial No.	430436				
String Length	10.1				
	DATE	BAROMETRIC PRESSURE (m)	LOGGER READINGS (m)	TEMPERATURE (c)	WATER LEVEL (m bgl)
69	19/10/2024 09:00	10.126018	13.963	10.928	6.713
70	19/10/2024 10:00	10.136216	13.973	11.032	6.213
71	19/10/2024 11:00	10.136216	13.977	10.980	6.209
72	19/10/2024 12:00	10.136216	13.968	11.032	6.218
73	19/10/2024 13:00	10.146413	13.979	10.980	6.217
74	19/10/2024 14:00	10.136216	13.978	10.980	6.208
75	19/10/2024 15:00	10.146413	13.980	11.032	6.216
76	19/10/2024 16:00	10.136216	13.981	10.876	6.205
77	19/10/2024 17:00	10.126018	13.966	11.032	6.210
78	19/10/2024 18:00	10.126018	13.973	11.032	6.203
79	19/10/2024 19:00	10.126018	13.977	10.980	6.199
80	19/10/2024 20:00	10.115821	13.963	10.980	6.203
81	19/10/2024 21:00	10.105623	13.957	10.928	6.199
82	19/10/2024 22:00	10.095426	13.945	10.980	6.200
83	19/10/2024 23:00	10.075031	13.941	10.980	6.184
84	20/10/2024 00:00	10.064834	13.914	10.980	6.201
85	20/10/2024 01:00	10.044439	13.895	10.980	6.199
86	20/10/2024 02:00	10.024044	13.886	10.928	6.188
87	20/10/2024 03:00	9.993452	13.852	10.980	6.191
88	20/10/2024 04:00	9.973057	13.836	10.980	6.187
89	20/10/2024 05:00	9.962860	13.832	10.928	6.181
90	20/10/2024 06:00	9.962860	13.834	10.980	6.179
91	20/10/2024 07:00	9.973057	13.834	10.928	6.189
92	20/10/2024 08:00	9.952662	13.825	10.928	6.178
93	20/10/2024 09:00	9.962860	13.837	10.928	6.176
94	20/10/2024 10:00	9.962860	13.832	10.980	6.181
95	20/10/2024 11:00	9.962860	13.832	10.980	6.181
96	20/10/2024 12:00	9.962860	13.836	10.980	6.177
97	20/10/2024 13:00	9.962860	13.823	10.928	6.190
98	20/10/2024 14:00	9.962860	13.829	10.980	6.184
99	20/10/2024 15:00	9.973057	13.834	10.928	6.189
100	20/10/2024 16:00	9.973057	13.844	10.980	6.179
101	20/10/2024 17:00	9.993452	13.853	10.928	6.190
102	20/10/2024 18:00	10.003649	13.868	10.928	6.186

Project.	Bioenergy Project, Lisheen, Co.Tippe	erary		Rec e	(
Project No.	25517			· ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	(star
Engineer .	DOBA				
Borehole No.	RC02				ICSI
Serial No.	430436				
String Length	10.1				
	DATE	BAROMETRIC PRESSURE (m)	LOGGER READINGS (m)	TEMPERATURE (c)	WATER LEVEL (m bgl)
103	20/10/2024 19:00	10.024044	13.882	10.928	6.192
104	20/10/2024 20:00	10.034242	13.905	10.980	6.179
105	20/10/2024 21:00	10.044439	13.911	10.928	6.183
106	20/10/2024 22:00	10.075031	13.930	10.928	6.195
107	20/10/2024 23:00	10.095426	13.956	10.928	6.189
108	21/10/2024 00:00	10.105623	13.962	10.928	6.194
109	21/10/2024 01:00	10.126018	13.978	10.928	6.198
110	21/10/2024 02:00	10.136216	13.993	10.980	6.193
111	21/10/2024 03:00	10.146413	13.989	10.980	6.207
112	21/10/2024 04:00	10.156610	14.008	10.980	6.199
113	21/10/2024 05:00	10.166808	14.013	10.928	6.204
114	21/10/2024 06:00	10.177005	14.017	10.980	6.210
115	21/10/2024 07:00	10.177005	14.029	10.980	6.198
116	21/10/2024 08:00	10.177005	14.038	10.980	6.189
117	21/10/2024 09:00	10.187203	14.041	10.928	6.196
118	21/10/2024 10:00	10.197400	14.054	10.980	6.193
119	21/10/2024 11:00	10.207597	14.050	10.980	6.208
120	21/10/2024 12:00	10.207597	14.057	10.928	6.201
121	21/10/2024 13:00	10.217795	14.048	10.980	6.220
122	21/10/2024 14:00	10.207597	14.059	10.980	6.199
123	21/10/2024 15:00	10.207597	14.057	10.928	6.201
124	21/10/2024 16:00	10.207597	14.062	10.980	6.196
125	21/10/2024 17:00	10.207597	14.066	10.928	6.192
126	21/10/2024 18:00	10.217795	14.070	10.980	6.198
127	21/10/2024 19:00	10.217795	14.063	10.980	6.205
128	21/10/2024 20:00	10.217795	14.073	10.980	6.195
129	21/10/2024 21:00	10.227992	14.072	10.928	6.206
130	21/10/2024 22:00	10.227992	14.069	10.980	6.209
131	21/10/2024 23:00	10.227992	14.083	10.928	6.195
132	22/10/2024 00:00	10.227992	14.080	10.980	6.198
133	22/10/2024 01:00	10.238190	14.082	10.980	6.206
134	22/10/2024 02:00	10.238190	14.093	10.980	6.195
135	22/10/2024 03:00	10.248387	14.098	10.980	6.200
136	22/10/2024 04:00	10.248387	14.101	10.928	6.197

Project.	Bioenergy Project, Lisheen, Co.Tippe	rary		Rec.	(
Project No.	25517			' <u>^`</u>	
Engineer .	DOBA				
Borehole No.	RC02				ICSI
Serial No.	430436				
String Length	10.1				
	DATE	BAROMETRIC PRESSURE (m)	LOGGER READINGS (m)	TEMPERATURE (c)	WATER LEVEL (m bgl)
137	22/10/2024 05:00	10.258584	14.105	10.928	6.204
138	22/10/2024 06:00	10.258584	14.110	10.980	6.199
139	22/10/2024 07:00	10.268782	14.115	10.928	6.204
140	22/10/2024 08:00	10.278979	14.118	10.928	6.211
141	22/10/2024 09:00	10.278979	14.130	10.980	6.199
142	22/10/2024 10:00	10.289177	14.139	10.928	6.200
143	22/10/2024 11:00	10.299374	14.145	10.928	6.204
144	22/10/2024 12:00	10.299374	14.147	10.980	6.202
145	22/10/2024 13:00	10.309571	14.145	10.980	6.215
146	22/10/2024 14:00	10.309571	14.153	10.980	6.207
147	22/10/2024 15:00	10.309571	14.146	10.980	6.214
148	22/10/2024 16:00	10.309571	14.141	10.928	6.219
149	22/10/2024 17:00	10.309571	14.152	10.980	6.208
150	22/10/2024 18:00	10.309571	14.163	10.928	6.197
151	22/10/2024 19:00	10.319769	14.163	10.980	6.207
152	22/10/2024 20:00	10.329966	14.164	10.980	6.216
153	22/10/2024 21:00	10.329966	14.177	10.980	6.203
154	22/10/2024 22:00	10.329966	14.173	10.928	6.207
155	22/10/2024 23:00	10.319769	14.180	10.928	6.190
156	23/10/2024 00:00	10.329966	14.172	10.980	6.208
157	23/10/2024 01:00	10.329966	14.180	10.980	6.200
158	23/10/2024 02:00	10.329966	14.179	10.980	6.201
159	23/10/2024 03:00	10.329966	14.174	10.928	6.206
160	23/10/2024 04:00	10.319769	14.174	10.980	6.196
161	23/10/2024 05:00	10.319769	14.169	10.980	6.201
162	23/10/2024 06:00	10.319769	14.165	10.980	6.205
163	23/10/2024 07:00	10.309571	14.170	10.980	6.190
164	23/10/2024 08:00	10.309571	14.163	10.980	6.197
165	23/10/2024 09:00	10.309571	14.164	10.980	6.196
166	23/10/2024 10:00	10.309571	14.160	10.980	6.200
167	23/10/2024 11:00	10.309571	14.158	10.980	6.202

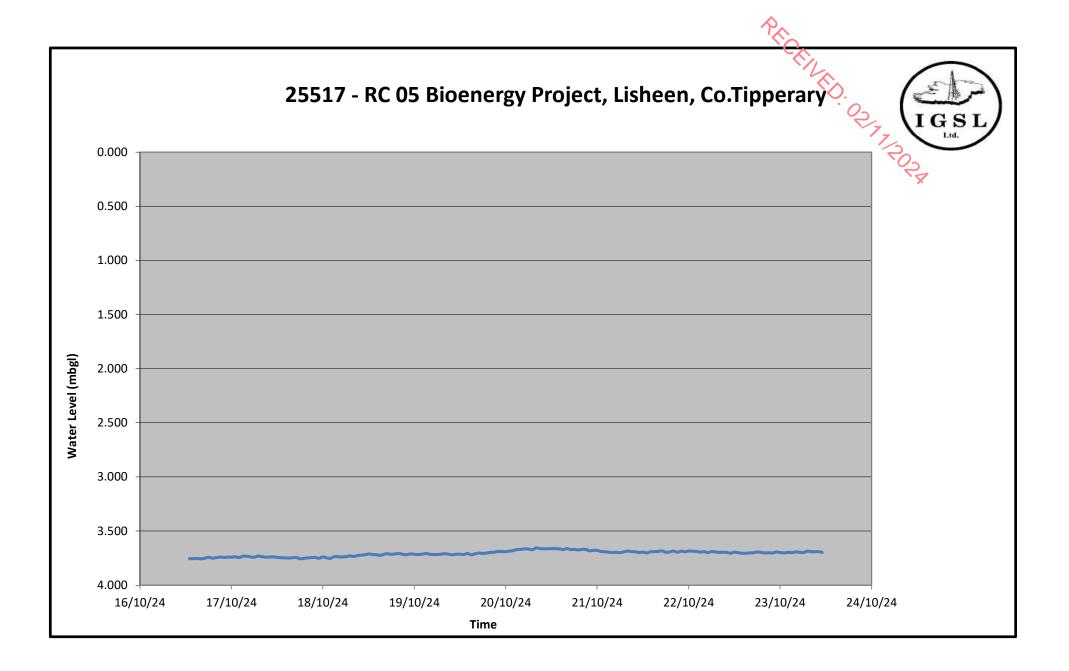

Project.	Bioenergy Project, Lisheen, Co.Tippe	erary		P_	(
Project No.	25517			· · · · · · · · · · · · · · · · · · ·	(stars)
Engineer .	DOBA			RECE	
Borehole No.	RC03				IGSI
Serial No.	882598				Ltd.
String Length	8.7				
	DATE	BAROMETRIC PRESSURE (m)	LOGGER READINGS (m)	TEMPERATURE (c)	WATER LEVEL (m bgl)
1	16/10/2024 13:00	10.003649	15.521	12.246	3.773
2	16/10/2024 14:00	10.003649	15.528	12.246	3.166
3	16/10/2024 15:00	10.003649	15.521	12.246	3.173
4	16/10/2024 16:00	10.003649	15.528	12.246	3.166
5	16/10/2024 17:00	10.003649	15.531	12.246	3.163
6	16/10/2024 18:00	10.003649	15.533	12.193	3.161
7	16/10/2024 19:00	10.013847	15.548	12.193	3.156
8	16/10/2024 20:00	10.013847	15.550	12.193	3.154
9	16/10/2024 21:00	10.013847	15.546	12.246	3.158
10	16/10/2024 22:00	10.024044	15.523	12.193	3.191
11	16/10/2024 23:00	10.024044	15.543	12.246	3.171
12	17/10/2024 00:00	10.024044	15.565	12.193	3.149
13	17/10/2024 01:00	10.024044	15.553	12.193	3.161
14	17/10/2024 02:00	10.034242	15.550	12.193	3.174
15	17/10/2024 03:00	10.024044	15.555	12.193	3.159
16	17/10/2024 04:00	10.024044	15.556	12.246	3.158
17	17/10/2024 05:00	10.034242	15.578	12.246	3.146
18	17/10/2024 06:00	10.034242	15.556	12.246	3.168
19	17/10/2024 07:00	10.034242	15.568	12.193	3.156
20	17/10/2024 08:00	10.044439	15.583	12.193	3.151
21	17/10/2024 09:00	10.054636	15.588	12.193	3.157
22	17/10/2024 10:00	10.064834	15.595	12.193	3.160
23	17/10/2024 11:00	10.075031	15.618	12.193	3.147
24	17/10/2024 12:00	10.085229	15.624	12.246	3.151
25	17/10/2024 13:00	10.095426	15.641	12.193	3.144
26	17/10/2024 14:00	10.105623	15.644	12.246	3.152
27	17/10/2024 15:00	10.115821	15.641	12.246	3.165
28	17/10/2024 16:00	10.126018	15.651	12.246	3.165
29	17/10/2024 17:00	10.136216	15.659	12.246	3.167
30	17/10/2024 18:00	10.146413	15.656	12.193	3.180
31	17/10/2024 19:00	10.156610	15.686	12.246	3.161
32	17/10/2024 20:00	10.156610	15.681	12.246	3.166
33	17/10/2024 21:00	10.156610	15.694	12.193	3.153
34	17/10/2024 22:00	10.156610	15.683	12.193	3.164

Project.	Bioenergy Project, Lisheen, Co.Tippe	erary		P_	(
Project No.	25517			· · · · · · · · · · · · · · · · · · ·	
Engineer .	DOBA			RECE	
Borehole No.	RC03				LICSI
Serial No.	882598				
String Length	8.7				
	DATE	BAROMETRIC PRESSURE (m)	LOGGER READINGS (m)	TEMPERATURE (c)	WATER LEVEL (m bgl)
35	17/10/2024 23:00	10.166808	15.694	12.193	3.163
36	18/10/2024 00:00	10.146413	15.686	12.246	3.150
37	18/10/2024 01:00	10.156610	15.696	12.246	3.151
38	18/10/2024 02:00	10.156610	15.702	12.246	3.145
39	18/10/2024 03:00	10.136216	15.686	12.246	3.140
40	18/10/2024 04:00	10.136216	15.681	12.193	3.145
41	18/10/2024 05:00	10.126018	15.679	12.246	3.137
42	18/10/2024 06:00	10.126018	15.674	12.246	3.142
43	18/10/2024 07:00	10.105623	15.661	12.246	3.135
44	18/10/2024 08:00	10.105623	15.656	12.193	3.140
45	18/10/2024 09:00	10.095426	15.659	12.246	3.126
46	18/10/2024 10:00	10.085229	15.649	12.246	3.126
47	18/10/2024 11:00	10.075031	15.651	12.246	3.114
48	18/10/2024 12:00	10.054636	15.619	12.246	3.126
49	18/10/2024 13:00	10.054636	15.631	12.246	3.114
50	18/10/2024 14:00	10.044439	15.608	12.246	3.126
51	18/10/2024 15:00	10.044439	15.621	12.246	3.113
52	18/10/2024 16:00	10.044439	15.619	12.246	3.115
53	18/10/2024 17:00	10.044439	15.611	12.246	3.123
54	18/10/2024 18:00	10.054636	15.639	12.246	3.106
55	18/10/2024 19:00	10.054636	15.619	12.246	3.126
56	18/10/2024 20:00	10.054636	15.636	12.193	3.109
57	18/10/2024 21:00	10.064834	15.646	12.246	3.109
58	18/10/2024 22:00	10.075031	15.644	12.246	3.121
59	18/10/2024 23:00	10.075031	15.636	12.246	3.129
60	19/10/2024 00:00	10.075031	15.636	12.246	3.129
61	19/10/2024 01:00	10.085229	15.654	12.246	3.121
62	19/10/2024 02:00	10.085229	15.671	12.193	3.104
63	19/10/2024 03:00	10.085229	15.651	12.246	3.124
64	19/10/2024 04:00	10.095426	15.673	12.193	3.112
65	19/10/2024 05:00	10.105623	15.681	12.246	3.115
66	19/10/2024 06:00	10.105623	15.696	12.246	3.100
67	19/10/2024 07:00	10.115821	15.684	12.246	3.122
68	19/10/2024 08:00	10.115821	15.691	12.246	3.115

Project.	Bioenergy Project, Lisheen, Co.Tippe	erary		P_	
Project No.	25517			· ~ ` ~ ` ~ ` ~ ` ~ ` ~ ` ~ ` ~ ` ~ ` ~	(star
Engineer .	DOBA			RECE	
Borehole No.	RC03				ICSI
Serial No.	882598				
String Length	8.7				
	DATE	BAROMETRIC PRESSURE (m)	LOGGER READINGS (m)	TEMPERATURE (c)	WATER LEVEL (m bgl)
69	19/10/2024 09:00	10.126018	15.686	12.246	3.130
70	19/10/2024 10:00	10.136216	15.702	12.246	3.124
71	19/10/2024 11:00	10.136216	15.709	12.246	3.117
72	19/10/2024 12:00	10.136216	15.702	12.246	3.124
73	19/10/2024 13:00	10.146413	15.712	12.246	3.124
74	19/10/2024 14:00	10.136216	15.722	12.246	3.104
75	19/10/2024 15:00	10.146413	15.707	12.246	3.129
76	19/10/2024 16:00	10.136216	15.714	12.246	3.112
77	19/10/2024 17:00	10.126018	15.717	12.246	3.099
78	19/10/2024 18:00	10.126018	15.729	12.193	3.087
79	19/10/2024 19:00	10.126018	15.707	12.246	3.109
80	19/10/2024 20:00	10.115821	15.729	12.246	3.077
81	19/10/2024 21:00	10.105623	15.727	12.246	3.069
82	19/10/2024 22:00	10.095426	15.696	12.246	3.089
83	19/10/2024 23:00	10.075031	15.696	12.246	3.069
84	20/10/2024 00:00	10.064834	15.686	12.246	3.069
85	20/10/2024 01:00	10.044439	15.671	12.246	3.063
86	20/10/2024 02:00	10.024044	15.644	12.246	3.070
87	20/10/2024 03:00	9.993452	15.639	12.246	3.044
88	20/10/2024 04:00	9.973057	15.601	12.246	3.062
89	20/10/2024 05:00	9.962860	15.598	12.246	3.055
90	20/10/2024 06:00	9.962860	15.611	12.246	3.042
91	20/10/2024 07:00	9.973057	15.593	12.246	3.070
92	20/10/2024 08:00	9.952662	15.614	12.246	3.029
93	20/10/2024 09:00	9.962860	15.614	12.246	3.039
94	20/10/2024 10:00	9.962860	15.581	12.246	3.072
95	20/10/2024 11:00	9.962860	15.591	12.246	3.062
96	20/10/2024 12:00	9.962860	15.588	12.246	3.065
97	20/10/2024 13:00	9.962860	15.593	12.246	3.060
98	20/10/2024 14:00	9.962860	15.598	12.246	3.055
99	20/10/2024 15:00	9.973057	15.583	12.246	3.080
100	20/10/2024 16:00	9.973057	15.601	12.246	3.062
101	20/10/2024 17:00	9.993452	15.624	12.246	3.059
102	20/10/2024 18:00	10.003649	15.621	12.246	3.073

Project.	Bioenergy Project, Lisheen, Co.Tippe	erary		P_	(
Project No.	25517			· · · · · · · · · · · · · · · · · · ·	(strain
Engineer .	DOBA			RECE	
Borehole No.	RC03				ICSI
Serial No.	882598				
String Length	8.7				
	DATE	BAROMETRIC PRESSURE (m)	LOGGER READINGS (m)	TEMPERATURE (c)	WATER LEVEL (m bgl)
103	20/10/2024 19:00	10.024044	15.631	12.246	3.983
104	20/10/2024 20:00	10.034242	15.654	12.246	3.070
105	20/10/2024 21:00	10.044439	15.649	12.246	3.085
106	20/10/2024 22:00	10.075031	15.679	12.246	3.086
107	20/10/2024 23:00	10.095426	15.709	12.246	3.076
108	21/10/2024 00:00	10.105623	15.709	12.246	3.087
109	21/10/2024 01:00	10.126018	15.719	12.246	3.097
110	21/10/2024 02:00	10.136216	15.729	12.246	3.097
111	21/10/2024 03:00	10.146413	15.737	12.246	3.099
112	21/10/2024 04:00	10.156610	15.749	12.246	3.098
113	21/10/2024 05:00	10.166808	15.752	12.246	3.105
114	21/10/2024 06:00	10.177005	15.777	12.246	3.090
115	21/10/2024 07:00	10.177005	15.762	12.246	3.105
116	21/10/2024 08:00	10.177005	15.774	12.246	3.093
117	21/10/2024 09:00	10.187203	15.792	12.246	3.085
118	21/10/2024 10:00	10.197400	15.784	12.246	3.103
119	21/10/2024 11:00	10.207597	15.795	12.246	3.103
120	21/10/2024 12:00	10.207597	15.810	12.246	3.088
121	21/10/2024 13:00	10.217795	15.807	12.246	3.101
122	21/10/2024 14:00	10.207597	15.800	12.246	3.098
123	21/10/2024 15:00	10.207597	15.797	12.246	3.101
124	21/10/2024 16:00	10.207597	15.805	12.299	3.093
125	21/10/2024 17:00	10.207597	15.807	12.246	3.091
126	21/10/2024 18:00	10.217795	15.817	12.246	3.091
127	21/10/2024 19:00	10.217795	15.820	12.246	3.088
128	21/10/2024 20:00	10.217795	15.822	12.246	3.086
129	21/10/2024 21:00	10.227992	15.820	12.246	3.098
130	21/10/2024 22:00	10.227992	15.832	12.246	3.086
131	21/10/2024 23:00	10.227992	15.825	12.246	3.093
132	22/10/2024 00:00	10.227992	15.817	12.246	3.101
133	22/10/2024 01:00	10.238190	15.830	12.246	3.098
134	22/10/2024 02:00	10.238190	15.840	12.246	3.088
135	22/10/2024 03:00	10.248387	15.820	12.246	3.118
136	22/10/2024 04:00	10.248387	15.855	12.246	3.083

Project.	Bioenergy Project, Lisheen, Co.Tippe	rary		RECE	
Project No.	25517			·<``	
Engineer .	DOBA				
Borehole No.	RC03				LICEL
Serial No.	882598				
String Length	8.7				
	DATE	BAROMETRIC PRESSURE (m)	LOGGER READINGS (m)	TEMPERATURE (c)	WATER LEVEL (m bgl)
137	22/10/2024 05:00	10.258584	15.850	12.246	3.999
138	22/10/2024 06:00	10.258584	15.857	12.246	3.092
139	22/10/2024 07:00	10.268782	15.845	12.246	3.114
140	22/10/2024 08:00	10.278979	15.877	12.246	3.092
141	22/10/2024 09:00	10.278979	15.875	12.246	3.094
142	22/10/2024 10:00	10.289177	15.885	12.246	3.094
143	22/10/2024 11:00	10.299374	15.890	12.246	3.099
144	22/10/2024 12:00	10.299374	15.890	12.246	3.099
145	22/10/2024 13:00	10.309571	15.888	12.246	3.112
146	22/10/2024 14:00	10.309571	15.898	12.246	3.102
147	22/10/2024 15:00	10.309571	15.890	12.246	3.110
148	22/10/2024 16:00	10.309571	15.898	12.246	3.102
149	22/10/2024 17:00	10.309571	15.900	12.246	3.100
150	22/10/2024 18:00	10.309571	15.913	12.246	3.087
151	22/10/2024 19:00	10.319769	15.903	12.246	3.107
152	22/10/2024 20:00	10.329966	15.900	12.246	3.120
153	22/10/2024 21:00	10.329966	15.905	12.246	3.115
154	22/10/2024 22:00	10.329966	15.900	12.246	3.120
155	22/10/2024 23:00	10.319769	15.910	12.246	3.100
156	23/10/2024 00:00	10.329966	15.911	12.299	3.109
157	23/10/2024 01:00	10.329966	15.908	12.246	3.112
158	23/10/2024 02:00	10.329966	15.913	12.246	3.107
159	23/10/2024 03:00	10.329966	15.908	12.246	3.112
160	23/10/2024 04:00	10.319769	15.918	12.299	3.092
161	23/10/2024 05:00	10.319769	15.923	12.246	3.087
162	23/10/2024 06:00	10.319769	15.928	12.246	3.082
163	23/10/2024 07:00	10.309571	15.915	12.246	3.085
164	23/10/2024 08:00	10.309571	15.905	12.246	3.095
165	23/10/2024 09:00	10.309571	15.908	12.246	3.092
166	23/10/2024 10:00	10.309571	15.910	12.246	3.090
167	23/10/2024 11:00	10.309571	15.900	12.246	3.100

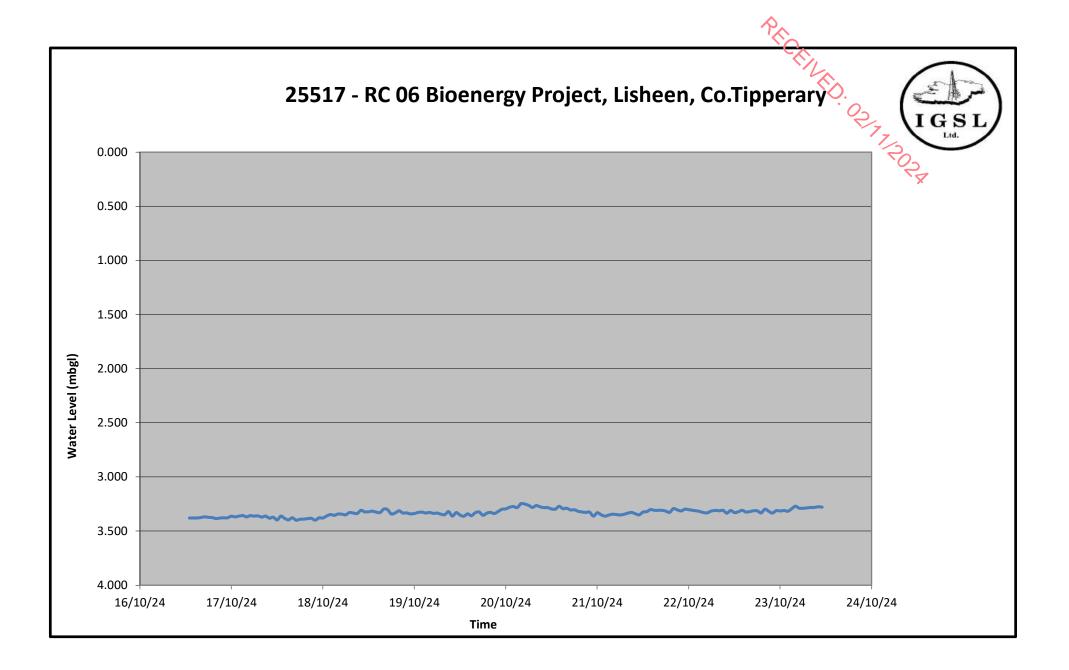

Project.	Bioenergy Project, Lisheen, Co.Tippe	erary		P_	(
Project No.	25517			· ~ ` ~ ` ~ ` ~ ` ~ ` ~ ` ~ ` ~ ` ~ ` ~	
Engineer .	DOBA			RECE	
Borehole No.	RC05				LICSI
Serial No.	856586				
String Length	11.6				
	DATE	BAROMETRIC PRESSURE (m)	LOGGER READINGS (m)	TEMPERATURE (c)	WATER LEVEL (m bgl)
1	16/10/2024 13:00	10.003649	17.829	11.774	3.755
2	16/10/2024 14:00	10.003649	17.829	11.774	3.755
3	16/10/2024 15:00	10.003649	17.830	11.670	3.754
4	16/10/2024 16:00	10.003649	17.827	11.566	3.757
5	16/10/2024 17:00	10.003649	17.832	11.463	3.752
6	16/10/2024 18:00	10.003649	17.842	11.566	3.742
7	16/10/2024 19:00	10.013847	17.843	11.566	3.751
8	16/10/2024 20:00	10.013847	17.847	11.463	3.747
9	16/10/2024 21:00	10.013847	17.853	11.566	3.741
10	16/10/2024 22:00	10.024044	17.860	11.618	3.744
11	16/10/2024 23:00	10.024044	17.863	11.463	3.741
12	17/10/2024 00:00	10.024044	17.862	11.411	3.742
13	17/10/2024 01:00	10.024044	17.866	11.566	3.738
14	17/10/2024 02:00	10.034242	17.869	11.515	3.745
15	17/10/2024 03:00	10.024044	17.871	11.618	3.733
16	17/10/2024 04:00	10.024044	17.871	11.566	3.733
17	17/10/2024 05:00	10.034242	17.875	11.566	3.739
18	17/10/2024 06:00	10.034242	17.872	11.515	3.742
19	17/10/2024 07:00	10.034242	17.883	11.618	3.731
20	17/10/2024 08:00	10.044439	17.888	11.618	3.736
21	17/10/2024 09:00	10.054636	17.893	11.463	3.742
22	17/10/2024 10:00	10.064834	17.905	11.566	3.740
23	17/10/2024 11:00	10.075031	17.916	11.411	3.739
24	17/10/2024 12:00	10.085229	17.922	11.566	3.743
25	17/10/2024 13:00	10.095426	17.929	11.618	3.746
26	17/10/2024 14:00	10.105623	17.938	11.618	3.748
27	17/10/2024 15:00	10.115821	17.946	11.463	3.750
28	17/10/2024 16:00	10.126018	17.959	11.515	3.747
29	17/10/2024 17:00	10.136216	17.971	11.670	3.745
30	17/10/2024 18:00	10.146413	17.971	11.463	3.755
31	17/10/2024 19:00	10.156610	17.984	11.515	3.753
32	17/10/2024 20:00	10.156610	17.988	11.463	3.749
33	17/10/2024 21:00	10.156610	17.991	11.515	3.746
34	17/10/2024 22:00	10.156610	17.993	11.566	3.744

Project.	Bioenergy Project, Lisheen, Co.Tipperary 25517 DOBA					
Project No.	25517			· · · · · · · · · · · · · · · · · · ·	(star	
Engineer .	DOBA					
Borehole No.	RC05				IGSI	
Serial No.	856586					
String Length	11.6					
	DATE	BAROMETRIC PRESSURE (m)	LOGGER READINGS (m)	TEMPERATURE (c)	WATER LEVEL (m bgl)	
35	17/10/2024 23:00	10.166808	17.995	11.515	3. 7 52	
36	18/10/2024 00:00	10.146413	17.987	11.515	3.729	
37	18/10/2024 01:00	10.156610	17.988	11.618	3.749	
38	18/10/2024 02:00	10.156610	17.985	11.515	3.752	
39	18/10/2024 03:00	10.136216	17.979	11.463	3.737	
40	18/10/2024 04:00	10.136216	17.978	11.670	3.738	
41	18/10/2024 05:00	10.126018	17.967	11.618	3.739	
42	18/10/2024 06:00	10.126018	17.969	11.463	3.737	
43	18/10/2024 07:00	10.105623	17.956	11.515	3.730	
44	18/10/2024 08:00	10.105623	17.951	11.411	3.735	
45	18/10/2024 09:00	10.095426	17.948	11.515	3.727	
46	18/10/2024 10:00	10.085229	17.943	11.618	3.722	
47	18/10/2024 11:00	10.075031	17.935	11.670	3.720	
48	18/10/2024 12:00	10.054636	17.923	11.618	3.712	
49	18/10/2024 13:00	10.054636	17.918	11.670	3.717	
50	18/10/2024 14:00	10.044439	17.906	11.618	3.718	
51	18/10/2024 15:00	10.044439	17.899	11.515	3.725	
52	18/10/2024 16:00	10.044439	17.909	11.463	3.715	
53	18/10/2024 17:00	10.044439	17.915	11.463	3.709	
54	18/10/2024 18:00	10.054636	17.919	11.566	3.716	
55	18/10/2024 19:00	10.054636	17.923	11.618	3.712	
56	18/10/2024 20:00	10.054636	17.927	11.618	3.708	
57	18/10/2024 21:00	10.064834	17.930	11.618	3.715	
58	18/10/2024 22:00	10.075031	17.936	11.566	3.719	
59	18/10/2024 23:00	10.075031	17.944	11.618	3.711	
60	19/10/2024 00:00	10.075031	17.941	11.463	3.714	
61	19/10/2024 01:00	10.085229	17.949	11.618	3.716	
62	19/10/2024 02:00	10.085229	17.951	11.618	3.714	
63	19/10/2024 03:00	10.085229	17.958	11.618	3.707	
64	19/10/2024 04:00	10.095426	17.962	11.566	3.713	
65	19/10/2024 05:00	10.105623	17.969	11.618	3.717	
66	19/10/2024 06:00	10.105623	17.969	11.515	3.717	
67	19/10/2024 07:00	10.115821	17.982	11.670	3.714	
68	19/10/2024 08:00	10.115821	17.986	11.515	3.710	

Project.	Bioenergy Project, Lisheen, Co.Tipperary 25517 DOBA						
Project No.	25517			·~`	(star		
Engineer .	DOBA						
Borehole No.	RC05				LICSI		
Serial No.	856586						
String Length	11.6						
	DATE	BAROMETRIC PRESSURE (m)	LOGGER READINGS (m)	TEMPERATURE (c)	WATER LEVEL (m bgl)		
69	19/10/2024 09:00	10.126018	17.992	11.515	3.714		
70	19/10/2024 10:00	10.136216	17.997	11.515	3.719		
71	19/10/2024 11:00	10.136216	18.002	11.515	3.714		
72	19/10/2024 12:00	10.136216	18.002	11.618	3.714		
73	19/10/2024 13:00	10.146413	18.009	11.463	3.717		
74	19/10/2024 14:00	10.136216	18.009	11.670	3.707		
75	19/10/2024 15:00	10.146413	18.007	11.566	3.719		
76	19/10/2024 16:00	10.136216	18.007	11.618	3.709		
77	19/10/2024 17:00	10.126018	18.002	11.670	3.704		
78	19/10/2024 18:00	10.126018	17.999	11.566	3.707		
79	19/10/2024 19:00	10.126018	18.002	11.566	3.704		
80	19/10/2024 20:00	10.115821	17.998	11.566	3.698		
81	19/10/2024 21:00	10.105623	17.990	11.463	3.696		
82	19/10/2024 22:00	10.095426	17.987	11.566	3.688		
83	19/10/2024 23:00	10.075031	17.965	11.670	3.690		
84	20/10/2024 00:00	10.064834	17.955	11.566	3.690		
85	20/10/2024 01:00	10.044439	17.939	11.566	3.685		
86	20/10/2024 02:00	10.024044	17.924	11.515	3.680		
87	20/10/2024 03:00	9.993452	17.903	11.566	3.670		
88	20/10/2024 04:00	9.973057	17.884	11.566	3.669		
89	20/10/2024 05:00	9.962860	17.878	11.566	3.665		
90	20/10/2024 06:00	9.962860	17.876	11.566	3.667		
91	20/10/2024 07:00	9.973057	17.880	11.515	3.673		
92	20/10/2024 08:00	9.952662	17.876	11.566	3.657		
93	20/10/2024 09:00	9.962860	17.880	11.566	3.663		
94	20/10/2024 10:00	9.962860	17.879	11.566	3.664		
95	20/10/2024 11:00	9.962860	17.879	11.566	3.664		
96	20/10/2024 12:00	9.962860	17.880	11.670	3.663		
97	20/10/2024 13:00	9.962860	17.880	11.618	3.663		
98	20/10/2024 14:00	9.962860	17.878	11.515	3.665		
99	20/10/2024 15:00	9.973057	17.882	11.566	3.671		
100	20/10/2024 16:00	9.973057	17.891	11.618	3.662		
101	20/10/2024 17:00	9.993452	17.902	11.566	3.671		
102	20/10/2024 18:00	10.003649	17.914	11.670	3.670		

Project.	Bioenergy Project, Lisheen, Co.Tipperary 25517 DOBA						
Project No.	25517			No.	(sta		
Engineer .	DOBA						
Borehole No.	RC05				ILCSI		
Serial No.	856586						
String Length	11.6						
	DATE	BAROMETRIC PRESSURE (m)	LOGGER READINGS (m)	TEMPERATURE (c)	WATER LEVEL (m bgl)		
103	20/10/2024 19:00	10.024044	17.929	11.566	3.975		
104	20/10/2024 20:00	10.034242	17.944	11.670	3.670		
105	20/10/2024 21:00	10.044439	17.955	11.566	3.669		
106	20/10/2024 22:00	10.075031	17.972	11.566	3.683		
107	20/10/2024 23:00	10.095426	17.997	11.618	3.678		
108	21/10/2024 00:00	10.105623	18.007	11.670	3.679		
109	21/10/2024 01:00	10.126018	18.016	11.566	3.690		
110	21/10/2024 02:00	10.136216	18.025	11.515	3.691		
111	21/10/2024 03:00	10.146413	18.032	11.618	3.694		
112	21/10/2024 04:00	10.156610	18.038	11.515	3.699		
113	21/10/2024 05:00	10.166808	18.051	11.618	3.696		
114	21/10/2024 06:00	10.177005	18.057	11.515	3.700		
115	21/10/2024 07:00	10.177005	18.065	11.618	3.692		
116	21/10/2024 08:00	10.177005	18.071	11.515	3.686		
117	21/10/2024 09:00	10.187203	18.077	11.566	3.690		
118	21/10/2024 10:00	10.197400	18.086	11.618	3.691		
119	21/10/2024 11:00	10.207597	18.089	11.618	3.699		
120	21/10/2024 12:00	10.207597	18.093	11.515	3.695		
121	21/10/2024 13:00	10.217795	18.096	11.566	3.702		
122	21/10/2024 14:00	10.207597	18.096	11.463	3.692		
123	21/10/2024 15:00	10.207597	18.097	11.566	3.691		
124	21/10/2024 16:00	10.207597	18.100	11.566	3.688		
125	21/10/2024 17:00	10.207597	18.104	11.618	3.684		
126	21/10/2024 18:00	10.217795	18.102	11.566	3.696		
127	21/10/2024 19:00	10.217795	18.105	11.566	3.693		
128	21/10/2024 20:00	10.217795	18.113	11.618	3.685		
129	21/10/2024 21:00	10.227992	18.112	11.566	3.696		
130	21/10/2024 22:00	10.227992	18.122	11.515	3.686		
131	21/10/2024 23:00	10.227992	18.117	11.566	3.691		
132	22/10/2024 00:00	10.227992	18.123	11.566	3.685		
133	22/10/2024 01:00	10.238190	18.132	11.618	3.686		
134	22/10/2024 02:00	10.238190	18.130	11.566	3.688		
135	22/10/2024 03:00	10.248387	18.134	11.566	3.694		
136	22/10/2024 04:00	10.248387	18.138	11.566	3.690		

Project.	Bioenergy Project, Lisheen, Co.Tippe	erary		Rec e	(
Project No.	25517			·~`	(star
Engineer .	DOBA				
Borehole No.	RC05				IGSL/
Serial No.	856586				
String Length	11.6				
	DATE	BAROMETRIC PRESSURE (m)	LOGGER READINGS (m)	TEMPERATURE (c)	WATER LEVEL (m bgl)
137	22/10/2024 05:00	10.258584	18.139	11.618	3.700
138	22/10/2024 06:00	10.258584	18.149	11.566	3.690
139	22/10/2024 07:00	10.268782	18.156	11.618	3.693
140	22/10/2024 08:00	10.278979	18.162	11.670	3.697
141	22/10/2024 09:00	10.278979	18.163	11.618	3.696
142	22/10/2024 10:00	10.289177	18.171	11.566	3.698
143	22/10/2024 11:00	10.299374	18.175	11.566	3.704
144	22/10/2024 12:00	10.299374	18.184	11.618	3.695
145	22/10/2024 13:00	10.309571	18.189	11.618	3.701
146	22/10/2024 14:00	10.309571	18.184	11.566	3.706
147	22/10/2024 15:00	10.309571	18.184	11.618	3.706
148	22/10/2024 16:00	10.309571	18.187	11.566	3.703
149	22/10/2024 17:00	10.309571	18.189	11.566	3.701
150	22/10/2024 18:00	10.309571	18.196	11.618	3.694
151	22/10/2024 19:00	10.319769	18.202	11.618	3.698
152	22/10/2024 20:00	10.329966	18.207	11.618	3.703
153	22/10/2024 21:00	10.329966	18.209	11.618	3.701
154	22/10/2024 22:00	10.329966	18.207	11.618	3.703
155	22/10/2024 23:00	10.319769	18.206	11.618	3.694
156	23/10/2024 00:00	10.329966	18.211	11.618	3.699
157	23/10/2024 01:00	10.329966	18.208	11.566	3.702
158	23/10/2024 02:00	10.329966	18.213	11.618	3.697
159	23/10/2024 03:00	10.329966	18.210	11.618	3.700
160	23/10/2024 04:00	10.319769	18.206	11.618	3.694
161	23/10/2024 05:00	10.319769	18.204	11.566	3.696
162	23/10/2024 06:00	10.319769	18.201	11.566	3.699
163	23/10/2024 07:00	10.309571	18.203	11.618	3.687
164	23/10/2024 08:00	10.309571	18.200	11.618	3.690
165	23/10/2024 09:00	10.309571	18.198	11.566	3.692
166	23/10/2024 10:00	10.309571	18.200	11.670	3.690
167	23/10/2024 11:00	10.309571	18.192	11.566	3.698

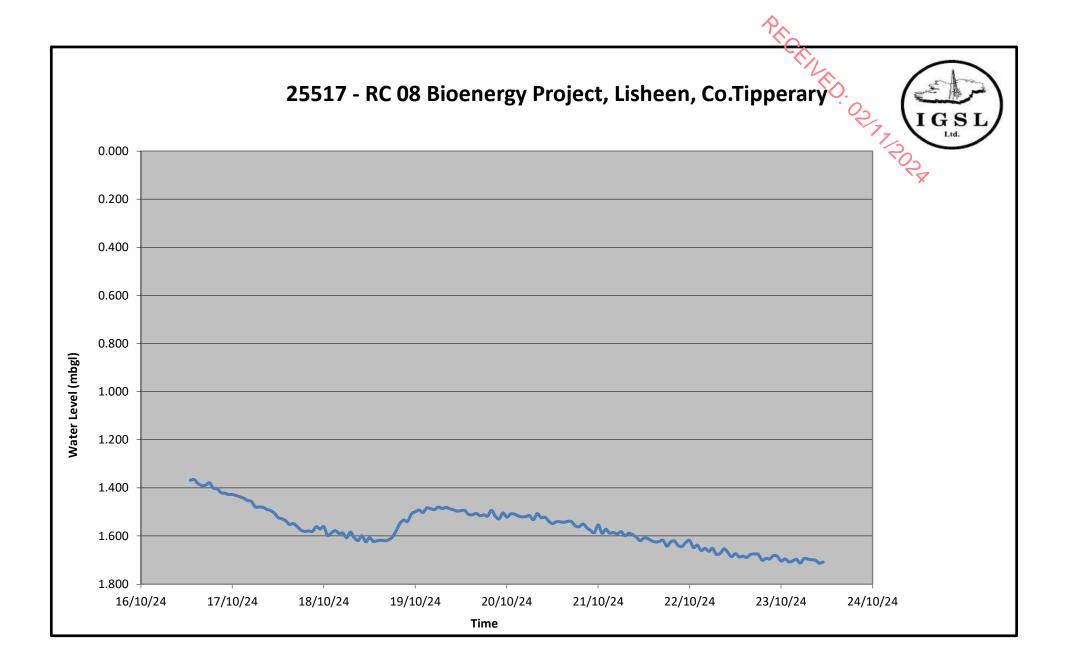

Project.	Bioenergy Project, Lisheen, Co.Tipperary 25517 DOBA						
Project No.	25517				and the second s		
Engineer .	DOBA						
Borehole No.	RC06				ICSI		
Serial No.	807165						
String Length	17.5						
	DATE	BAROMETRIC PRESSURE (m)	LOGGER READINGS (m)	TEMPERATURE (c)	WATER LEVEL (m bgl)		
1	16/10/2024 13:00	10.003649	24.074	10.452	3.380		
2	16/10/2024 14:00	10.003649	24.074	10.452	3.380		
3	16/10/2024 15:00	10.003649	24.074	10.348	3.380		
4	16/10/2024 16:00	10.003649	24.079	10.452	3.375		
5	16/10/2024 17:00	10.003649	24.084	10.557	3.370		
6	16/10/2024 18:00	10.003649	24.080	10.557	3.374		
7	16/10/2024 19:00	10.013847	24.088	10.400	3.376		
8	16/10/2024 20:00	10.013847	24.079	10.452	3.385		
9	16/10/2024 21:00	10.013847	24.084	10.452	3.380		
10	16/10/2024 22:00	10.024044	24.096	10.452	3.378		
11	16/10/2024 23:00	10.024044	24.096	10.400	3.378		
12	17/10/2024 00:00	10.024044	24.110	10.452	3.364		
13	17/10/2024 01:00	10.024044	24.105	10.452	3.369		
14	17/10/2024 02:00	10.034242	24.122	10.452	3.362		
15	17/10/2024 03:00	10.024044	24.117	10.505	3.357		
16	17/10/2024 04:00	10.024044	24.105	10.452	3.369		
17	17/10/2024 05:00	10.034242	24.126	10.400	3.358		
18	17/10/2024 06:00	10.034242	24.122	10.452	3.362		
19	17/10/2024 07:00	10.034242	24.124	10.505	3.360		
20	17/10/2024 08:00	10.044439	24.124	10.452	3.370		
21	17/10/2024 09:00	10.054636	24.143	10.452	3.362		
22	17/10/2024 10:00	10.064834	24.134	10.505	3.381		
23	17/10/2024 11:00	10.075031	24.153	10.452	3.372		
24	17/10/2024 12:00	10.085229	24.138	10.452	3.397		
25	17/10/2024 13:00	10.095426	24.183	10.452	3.362		
26	17/10/2024 14:00	10.105623	24.172	10.452	3.384		
27	17/10/2024 15:00	10.115821	24.169	10.452	3.397		
28	17/10/2024 16:00	10.126018	24.198	10.452	3.378		
29	17/10/2024 17:00	10.136216	24.186	10.452	3.400		
30	17/10/2024 18:00	10.146413	24.205	10.452	3.391		
31	17/10/2024 19:00	10.156610	24.217	10.452	3.390		
32	17/10/2024 20:00	10.156610	24.221	10.452	3.386		
33	17/10/2024 21:00	10.156610	24.224	10.452	3.383		
34	17/10/2024 22:00	10.156610	24.207	10.400	3.400		

Project.	Bioenergy Project, Lisheen, Co.Tipperary 25517 DOBA					
Project No.	25517			·~`	(star	
Engineer .	DOBA					
Borehole No.	RC06				LICSI	
Serial No.	807165					
String Length	17.5					
	DATE	BAROMETRIC PRESSURE (m)	LOGGER READINGS (m)	TEMPERATURE (c)	WATER LEVEL (m bgl)	
35	17/10/2024 23:00	10.166808	24.238	10.452	3.379	
36	18/10/2024 00:00	10.146413	24.217	10.452	3.379	
37	18/10/2024 01:00	10.156610	24.245	10.452	3.362	
38	18/10/2024 02:00	10.156610	24.259	10.452	3.348	
39	18/10/2024 03:00	10.136216	24.231	10.452	3.355	
40	18/10/2024 04:00	10.136216	24.243	10.452	3.343	
41	18/10/2024 05:00	10.126018	24.231	10.452	3.345	
42	18/10/2024 06:00	10.126018	24.226	10.452	3.350	
43	18/10/2024 07:00	10.105623	24.226	10.452	3.330	
44	18/10/2024 08:00	10.105623	24.221	10.452	3.335	
45	18/10/2024 09:00	10.095426	24.207	10.452	3.338	
46	18/10/2024 10:00	10.085229	24.226	10.505	3.309	
47	18/10/2024 11:00	10.075031	24.202	10.452	3.323	
48	18/10/2024 12:00	10.054636	24.183	10.452	3.322	
49	18/10/2024 13:00	10.054636	24.188	10.452	3.317	
50	18/10/2024 14:00	10.044439	24.169	10.452	3.325	
51	18/10/2024 15:00	10.044439	24.165	10.452	3.329	
52	18/10/2024 16:00	10.044439	24.198	10.452	3.296	
53	18/10/2024 17:00	10.044439	24.191	10.452	3.303	
54	18/10/2024 18:00	10.054636	24.162	10.452	3.343	
55	18/10/2024 19:00	10.054636	24.172	10.452	3.333	
56	18/10/2024 20:00	10.054636	24.191	10.452	3.314	
57	18/10/2024 21:00	10.064834	24.181	10.505	3.334	
58	18/10/2024 22:00	10.075031	24.193	10.452	3.332	
59	18/10/2024 23:00	10.075031	24.183	10.452	3.342	
60	19/10/2024 00:00	10.075031	24.186	10.452	3.339	
61	19/10/2024 01:00	10.085229	24.207	10.452	3.328	
62	19/10/2024 02:00	10.085229	24.210	10.452	3.325	
63	19/10/2024 03:00	10.085229	24.202	10.452	3.333	
64	19/10/2024 04:00	10.095426	24.217	10.452	3.328	
65	19/10/2024 05:00	10.105623	24.219	10.452	3.337	
66	19/10/2024 06:00	10.105623	24.221	10.452	3.335	
67	19/10/2024 07:00	10.115821	24.221	10.452	3.345	
68	19/10/2024 08:00	10.115821	24.217	10.452	3.349	

Project.	Bioenergy Project, Lisheen, Co.Tippe	Bioenergy Project, Lisheen, Co.Tipperary 25517 DOBA						
Project No.	25517			·~`	(star			
Engineer .	DOBA							
Borehole No.	RC06				LICSI			
Serial No.	807165							
String Length	17.5							
	DATE	BAROMETRIC PRESSURE (m)	LOGGER READINGS (m)	TEMPERATURE (c)	WATER LEVEL (m bgl)			
69	19/10/2024 09:00	10.126018	24.255	10.452	3.921			
70	19/10/2024 10:00	10.136216	24.224	10.452	3.362			
71	19/10/2024 11:00	10.136216	24.257	10.452	3.329			
72	19/10/2024 12:00	10.136216	24.233	10.452	3.353			
73	19/10/2024 13:00	10.146413	24.233	10.452	3.363			
74	19/10/2024 14:00	10.136216	24.245	10.452	3.341			
75	19/10/2024 15:00	10.146413	24.238	10.452	3.358			
76	19/10/2024 16:00	10.136216	24.255	10.452	3.331			
77	19/10/2024 17:00	10.126018	24.252	10.452	3.324			
78	19/10/2024 18:00	10.126018	24.221	10.452	3.355			
79	19/10/2024 19:00	10.126018	24.240	10.452	3.336			
80	19/10/2024 20:00	10.115821	24.238	10.452	3.328			
81	19/10/2024 21:00	10.105623	24.217	10.452	3.339			
82	19/10/2024 22:00	10.095426	24.226	10.452	3.319			
83	19/10/2024 23:00	10.075031	24.226	10.452	3.299			
84	20/10/2024 00:00	10.064834	24.219	10.452	3.296			
85	20/10/2024 01:00	10.044439	24.214	10.452	3.280			
86	20/10/2024 02:00	10.024044	24.200	10.452	3.274			
87	20/10/2024 03:00	9.993452	24.160	10.452	3.283			
88	20/10/2024 04:00	9.973057	24.176	10.452	3.247			
89	20/10/2024 05:00	9.962860	24.162	10.452	3.251			
90	20/10/2024 06:00	9.962860	24.150	10.452	3.263			
91	20/10/2024 07:00	9.973057	24.141	10.452	3.282			
92	20/10/2024 08:00	9.952662	24.138	10.452	3.265			
93	20/10/2024 09:00	9.962860	24.136	10.452	3.277			
94	20/10/2024 10:00	9.962860	24.129	10.452	3.284			
95	20/10/2024 11:00	9.962860	24.129	10.452	3.284			
96	20/10/2024 12:00	9.962860	24.117	10.452	3.296			
97	20/10/2024 13:00	9.962860	24.115	10.452	3.298			
98	20/10/2024 14:00	9.962860	24.141	10.452	3.272			
99	20/10/2024 15:00	9.973057	24.129	10.452	3.294			
100	20/10/2024 16:00	9.973057	24.134	10.452	3.289			
101	20/10/2024 17:00	9.993452	24.138	10.452	3.305			
102	20/10/2024 18:00	10.003649	24.150	10.452	3.304			

Project.	Bioenergy Project, Lisheen, Co.Tipperary 25517 DOBA					
Project No.	25517			·~`	(star	
Engineer .	DOBA					
Borehole No.	RC06				LICSI	
Serial No.	807165					
String Length	17.5					
	DATE	BAROMETRIC PRESSURE (m)	LOGGER READINGS (m)	TEMPERATURE (c)	WATER LEVEL (m bgl)	
103	20/10/2024 19:00	10.024044	24.157	10.452	3.917	
104	20/10/2024 20:00	10.034242	24.160	10.452	3.324	
105	20/10/2024 21:00	10.044439	24.167	10.452	3.327	
106	20/10/2024 22:00	10.075031	24.200	10.452	3.325	
107	20/10/2024 23:00	10.095426	24.183	10.452	3.362	
108	21/10/2024 00:00	10.105623	24.224	10.452	3.332	
109	21/10/2024 01:00	10.126018	24.226	10.452	3.350	
110	21/10/2024 02:00	10.136216	24.224	10.452	3.362	
111	21/10/2024 03:00	10.146413	24.243	10.452	3.353	
112	21/10/2024 04:00	10.156610	24.262	10.452	3.345	
113	21/10/2024 05:00	10.166808	24.269	10.452	3.348	
114	21/10/2024 06:00	10.177005	24.276	10.452	3.351	
115	21/10/2024 07:00	10.177005	24.281	10.452	3.346	
116	21/10/2024 08:00	10.177005	24.292	10.452	3.335	
117	21/10/2024 09:00	10.187203	24.309	10.452	3.328	
118	21/10/2024 10:00	10.197400	24.307	10.452	3.340	
119	21/10/2024 11:00	10.207597	24.307	10.452	3.351	
120	21/10/2024 12:00	10.207597	24.333	10.452	3.325	
121	21/10/2024 13:00	10.217795	24.347	10.452	3.321	
122	21/10/2024 14:00	10.207597	24.356	10.452	3.302	
123	21/10/2024 15:00	10.207597	24.349	10.452	3.309	
124	21/10/2024 16:00	10.207597	24.349	10.452	3.309	
125	21/10/2024 17:00	10.207597	24.349	10.452	3.309	
126	21/10/2024 18:00	10.217795	24.352	10.452	3.316	
127	21/10/2024 19:00	10.217795	24.340	10.452	3.328	
128	21/10/2024 20:00	10.217795	24.375	10.452	3.293	
129	21/10/2024 21:00	10.227992	24.373	10.452	3.305	
130	21/10/2024 22:00	10.227992	24.364	10.452	3.314	
131	21/10/2024 23:00	10.227992	24.380	10.452	3.298	
132	22/10/2024 00:00	10.227992	24.375	10.452	3.303	
133	22/10/2024 01:00	10.238190	24.380	10.452	3.308	
134	22/10/2024 02:00	10.238190	24.375	10.452	3.313	
135	22/10/2024 03:00	10.248387	24.378	10.452	3.320	
136	22/10/2024 04:00	10.248387	24.368	10.452	3.330	

Project.	Bioenergy Project, Lisheen, Co.Tipper	ary		P _A	(
Project No.	25517			· · · · · · · · · · · · · · · · · · ·	and and a second
Engineer .	DOBA			Rec.	
Borehole No.	RC06				(IGSL)
Serial No.	807165				
String Length	17.5				
	DATE	BAROMETRIC PRESSURE (m)	LOGGER READINGS (m)	TEMPERATURE (c)	WATER LEVEL (m bgl)
137	22/10/2024 05:00	10.258584	24.378	10.452	3.931
138	22/10/2024 06:00	10.258584	24.394	10.452	3.315
139	22/10/2024 07:00	10.268782	24.409	10.452	3.310
140	22/10/2024 08:00	10.278979	24.416	10.452	3.313
141	22/10/2024 09:00	10.278979	24.420	10.452	3.309
142	22/10/2024 10:00	10.289177	24.404	10.452	3.335
143	22/10/2024 11:00	10.299374	24.439	10.452	3.310
144	22/10/2024 12:00	10.299374	24.420	10.452	3.329
145	22/10/2024 13:00	10.309571	24.437	10.452	3.323
146	22/10/2024 14:00	10.309571	24.451	10.452	3.309
147	22/10/2024 15:00	10.309571	24.435	10.452	3.325
148	22/10/2024 16:00	10.309571	24.439	10.452	3.321
149	22/10/2024 17:00	10.309571	24.447	10.505	3.313
150	22/10/2024 18:00	10.309571	24.446	10.452	3.314
151	22/10/2024 19:00	10.319769	24.437	10.452	3.333
152	22/10/2024 20:00	10.329966	24.482	10.452	3.298
153	22/10/2024 21:00	10.329966	24.463	10.505	3.317
154	22/10/2024 22:00	10.329966	24.446	10.452	3.334
155	22/10/2024 23:00	10.319769	24.458	10.452	3.312
156	23/10/2024 00:00	10.329966	24.465	10.452	3.315
157	23/10/2024 01:00	10.329966	24.470	10.452	3.310
158	23/10/2024 02:00	10.329966	24.463	10.452	3.317
159	23/10/2024 03:00	10.329966	24.484	10.452	3.296
160	23/10/2024 04:00	10.319769	24.499	10.452	3.271
161	23/10/2024 05:00	10.319769	24.480	10.452	3.290
162	23/10/2024 06:00	10.319769	24.480	10.452	3.290
163	23/10/2024 07:00	10.309571	24.473	10.452	3.287
164	23/10/2024 08:00	10.309571	24.477	10.452	3.283
165	23/10/2024 09:00	10.309571	24.477	10.452	3.283
166	23/10/2024 10:00	10.309571	24.484	10.452	3.276
167	23/10/2024 11:00	10.309571	24.480	10.452	3.280


Project.	Bioenergy Project, Lisheen, Co.Tipperary 25517 DOBA					
Project No.	25517			· · · · · · · · · · · · · · · · · · ·	and the second s	
Engineer .	DOBA					
Borehole No.	RC08				IGSI	
Serial No.	1002640				Ltd.	
String Length	11.3					
	DATE	BAROMETRIC PRESSURE (m)	LOGGER READINGS (m)	TEMPERATURE (c)	WATER LEVEL (m bgl)	
1	16/10/2024 13:00	10.003649	19.936	11.517	1.368	
2	16/10/2024 14:00	10.003649	19.938	11.465	1.366	
3	16/10/2024 15:00	10.003649	19.922	11.569	1.382	
4	16/10/2024 16:00	10.003649	19.914	11.517	1.390	
5	16/10/2024 17:00	10.003649	19.915	11.206	1.389	
6	16/10/2024 18:00	10.003649	19.925	11.206	1.379	
7	16/10/2024 19:00	10.013847	19.913	11.206	1.401	
8	16/10/2024 20:00	10.013847	19.911	11.362	1.403	
9	16/10/2024 21:00	10.013847	19.894	11.206	1.420	
10	16/10/2024 22:00	10.024044	19.902	11.413	1.422	
11	16/10/2024 23:00	10.024044	19.897	11.362	1.427	
12	17/10/2024 00:00	10.024044	19.897	11.413	1.427	
13	17/10/2024 01:00	10.024044	19.892	11.362	1.432	
14	17/10/2024 02:00	10.034242	19.897	11.413	1.437	
15	17/10/2024 03:00	10.024044	19.881	11.362	1.443	
16	17/10/2024 04:00	10.024044	19.872	11.465	1.452	
17	17/10/2024 05:00	10.034242	19.878	11.413	1.456	
18	17/10/2024 06:00	10.034242	19.855	11.413	1.479	
19	17/10/2024 07:00	10.034242	19.855	11.362	1.479	
20	17/10/2024 08:00	10.044439	19.864	11.413	1.480	
21	17/10/2024 09:00	10.054636	19.866	11.362	1.489	
22	17/10/2024 10:00	10.064834	19.871	11.413	1.494	
23	17/10/2024 11:00	10.075031	19.871	11.362	1.504	
24	17/10/2024 12:00	10.085229	19.862	11.413	1.523	
25	17/10/2024 13:00	10.095426	19.867	11.413	1.528	
26	17/10/2024 14:00	10.105623	19.869	11.362	1.537	
27	17/10/2024 15:00	10.115821	19.864	11.362	1.552	
28	17/10/2024 16:00	10.126018	19.878	11.413	1.548	
29	17/10/2024 17:00	10.136216	19.876	11.413	1.560	
30	17/10/2024 18:00	10.146413	19.871	11.413	1.575	
31	17/10/2024 19:00	10.156610	19.876	11.413	1.581	
32	17/10/2024 20:00	10.156610	19.878	11.362	1.579	
33	17/10/2024 21:00	10.156610	19.876	11.413	1.581	
34	17/10/2024 22:00	10.156610	19.895	11.362	1.562	

Project.	Bioenergy Project, Lisheen, Co.Tipperary 25517 DOBA						
Project No.	25517			·~`	(star		
Engineer .	DOBA						
Borehole No.	RC08				LICSI		
Serial No.	1002640						
String Length	11.3						
	DATE	BAROMETRIC PRESSURE (m)	LOGGER READINGS (m)	TEMPERATURE (c)	WATER LEVEL (m bgl)		
35	17/10/2024 23:00	10.166808	19.897	11.413	1.570		
36	18/10/2024 00:00	10.146413	19.885	11.362	1.561		
37	18/10/2024 01:00	10.156610	19.859	11.362	1.598		
38	18/10/2024 02:00	10.156610	19.869	11.362	1.588		
39	18/10/2024 03:00	10.136216	19.859	11.362	1.577		
40	18/10/2024 04:00	10.136216	19.847	11.362	1.589		
41	18/10/2024 05:00	10.126018	19.838	11.413	1.588		
42	18/10/2024 06:00	10.126018	19.819	11.362	1.607		
43	18/10/2024 07:00	10.105623	19.822	11.413	1.584		
44	18/10/2024 08:00	10.105623	19.798	11.413	1.608		
45	18/10/2024 09:00	10.095426	19.777	11.362	1.618		
46	18/10/2024 10:00	10.085229	19.786	11.413	1.599		
47	18/10/2024 11:00	10.075031	19.751	11.362	1.624		
48	18/10/2024 12:00	10.054636	19.748	11.413	1.607		
49	18/10/2024 13:00	10.054636	19.732	11.362	1.623		
50	18/10/2024 14:00	10.044439	19.725	11.413	1.619		
51	18/10/2024 15:00	10.044439	19.727	11.362	1.617		
52	18/10/2024 16:00	10.044439	19.725	11.362	1.619		
53	18/10/2024 17:00	10.044439	19.729	11.362	1.615		
54	18/10/2024 18:00	10.054636	19.751	11.362	1.604		
55	18/10/2024 19:00	10.054636	19.777	11.413	1.578		
56	18/10/2024 20:00	10.054636	19.808	11.413	1.547		
57	18/10/2024 21:00	10.064834	19.831	11.413	1.534		
58	18/10/2024 22:00	10.075031	19.836	11.362	1.539		
59	18/10/2024 23:00	10.075031	19.867	11.413	1.508		
60	19/10/2024 00:00	10.075031	19.876	11.413	1.499		
61	19/10/2024 01:00	10.085229	19.893	11.413	1.492		
62	19/10/2024 02:00	10.085229	19.883	11.362	1.502		
63	19/10/2024 03:00	10.085229	19.902	11.362	1.483		
64	19/10/2024 04:00	10.095426	19.909	11.362	1.486		
65	19/10/2024 05:00	10.105623	19.916	11.413	1.490		
66	19/10/2024 06:00	10.105623	19.926	11.413	1.480		
67	19/10/2024 07:00	10.115821	19.930	11.413	1.486		
68	19/10/2024 08:00	10.115821	19.935	11.413	1.481		

Project.	Bioenergy Project, Lisheen, Co.Tipperary 25517 DOBA					
Project No.	25517			· ~ ` ~ ` ~ ` ~ ` ~ ` ~ ` ~ ` ~ ` ~ ` ~		
Engineer .	DOBA					
Borehole No.	RC08				LICSI	
Serial No.	1002640					
String Length	11.3					
	DATE	BAROMETRIC PRESSURE (m)	LOGGER READINGS (m)	TEMPERATURE (c)	WATER LEVEL (m bgl)	
69	19/10/2024 09:00	10.126018	19.940	11.413	1.#86	
70	19/10/2024 10:00	10.136216	19.945	11.413	1.491	
71	19/10/2024 11:00	10.136216	19.940	11.413	1.496	
72	19/10/2024 12:00	10.136216	19.942	11.413	1.494	
73	19/10/2024 13:00	10.146413	19.952	11.413	1.494	
74	19/10/2024 14:00	10.136216	19.926	11.413	1.510	
75	19/10/2024 15:00	10.146413	19.935	11.413	1.511	
76	19/10/2024 16:00	10.136216	19.930	11.413	1.506	
77	19/10/2024 17:00	10.126018	19.911	11.413	1.515	
78	19/10/2024 18:00	10.126018	19.914	11.413	1.512	
79	19/10/2024 19:00	10.126018	19.909	11.362	1.517	
80	19/10/2024 20:00	10.115821	19.923	11.413	1.493	
81	19/10/2024 21:00	10.105623	19.888	11.413	1.518	
82	19/10/2024 22:00	10.095426	19.867	11.413	1.528	
83	19/10/2024 23:00	10.075031	19.871	11.413	1.504	
84	20/10/2024 00:00	10.064834	19.843	11.413	1.522	
85	20/10/2024 01:00	10.044439	19.836	11.413	1.508	
86	20/10/2024 02:00	10.024044	19.815	11.413	1.509	
87	20/10/2024 03:00	9.993452	19.777	11.362	1.516	
88	20/10/2024 04:00	9.973057	19.753	11.413	1.520	
89	20/10/2024 05:00	9.962860	19.744	11.413	1.519	
90	20/10/2024 06:00	9.962860	19.748	11.362	1.515	
91	20/10/2024 07:00	9.973057	19.741	11.413	1.532	
92	20/10/2024 08:00	9.952662	19.746	11.413	1.507	
93	20/10/2024 09:00	9.962860	19.739	11.413	1.524	
94	20/10/2024 10:00	9.962860	19.741	11.413	1.522	
95	20/10/2024 11:00	9.962860	19.725	11.413	1.538	
96	20/10/2024 12:00	9.962860	19.715	11.362	1.548	
97	20/10/2024 13:00	9.962860	19.722	11.362	1.541	
98	20/10/2024 14:00	9.962860	19.722	11.413	1.541	
99	20/10/2024 15:00	9.973057	19.730	11.413	1.543	
100	20/10/2024 16:00	9.973057	19.734	11.362	1.539	
101	20/10/2024 17:00	9.993452	19.753	11.413	1.540	
102	20/10/2024 18:00	10.003649	19.746	11.413	1.558	

Project.	Bioenergy Project, Lisheen, Co.Tipperary						
Project No.							
Engineer .	DOBA						
Borehole No.	RC08				LICSI		
Serial No.	1002640						
String Length	11.3						
	DATE	BAROMETRIC PRESSURE (m)	LOGGER READINGS (m)	TEMPERATURE (c)	WATER LEVEL (m bgl)		
103	20/10/2024 19:00	10.024044	19.763	11.413	1.561		
104	20/10/2024 20:00	10.034242	19.784	11.362	1.550		
105	20/10/2024 21:00	10.044439	19.779	11.413	1.565		
106	20/10/2024 22:00	10.075031	19.798	11.362	1.577		
107	20/10/2024 23:00	10.095426	19.810	11.413	1.585		
108	21/10/2024 00:00	10.105623	19.852	11.413	1.554		
109	21/10/2024 01:00	10.126018	19.838	11.413	1.588		
110	21/10/2024 02:00	10.136216	19.864	11.413	1.572		
111	21/10/2024 03:00	10.146413	19.859	11.362	1.587		
112	21/10/2024 04:00	10.156610	19.871	11.413	1.586		
113	21/10/2024 05:00	10.166808	19.876	11.413	1.591		
114	21/10/2024 06:00	10.177005	19.895	11.413	1.582		
115	21/10/2024 07:00	10.177005	19.878	11.413	1.599		
116	21/10/2024 08:00	10.177005	19.888	11.413	1.589		
117	21/10/2024 09:00	10.187203	19.893	11.413	1.594		
118	21/10/2024 10:00	10.197400	19.893	11.413	1.604		
119	21/10/2024 11:00	10.207597	19.888	11.413	1.620		
120	21/10/2024 12:00	10.207597	19.900	11.413	1.608		
121	21/10/2024 13:00	10.217795	19.907	11.413	1.611		
122	21/10/2024 14:00	10.207597	19.888	11.413	1.620		
123	21/10/2024 15:00	10.207597	19.883	11.413	1.625		
124	21/10/2024 16:00	10.207597	19.885	11.413	1.623		
125	21/10/2024 17:00	10.207597	19.890	11.413	1.618		
126	21/10/2024 18:00	10.217795	19.876	11.413	1.642		
127	21/10/2024 19:00	10.217795	19.893	11.413	1.625		
128	21/10/2024 20:00	10.217795	19.897	11.413	1.621		
129	21/10/2024 21:00	10.227992	19.888	11.413	1.640		
130	21/10/2024 22:00	10.227992	19.885	11.413	1.643		
131	21/10/2024 23:00	10.227992	19.902	11.413	1.626		
132	22/10/2024 00:00	10.227992	19.909	11.413	1.619		
133	22/10/2024 01:00	10.238190	19.890	11.413	1.648		
134	22/10/2024 02:00	10.238190	19.900	11.413	1.638		
135	22/10/2024 03:00	10.248387	19.888	11.413	1.660		
136	22/10/2024 04:00	10.248387	19.897	11.413	1.651		

Project.	Bioenergy Project, Lisheen, Co.Tipperary 25517 DOBA						
Project No.	25517						
Engineer .	DOBA						
Borehole No.	RC08				LICEL		
Serial No.	1002640						
String Length	11.3						
	DATE	BAROMETRIC PRESSURE (m)	LOGGER READINGS (m)	TEMPERATURE (c)	WATER LEVEL (m bgl)		
137	22/10/2024 05:00	10.258584	19.895	11.413	1.664		
138	22/10/2024 06:00	10.258584	19.907	11.413	1.652		
139	22/10/2024 07:00	10.268782	19.893	11.413	1.676		
140	22/10/2024 08:00	10.278979	19.907	11.413	1.672		
141	22/10/2024 09:00	10.278979	19.926	11.413	1.653		
142	22/10/2024 10:00	10.289177	19.921	11.413	1.668		
143	22/10/2024 11:00	10.299374	19.914	11.413	1.685		
144	22/10/2024 12:00	10.299374	19.926	11.413	1.673		
145	22/10/2024 13:00	10.309571	19.923	11.413	1.687		
146	22/10/2024 14:00	10.309571	19.926	11.413	1.684		
147	22/10/2024 15:00	10.309571	19.921	11.413	1.689		
148	22/10/2024 16:00	10.309571	19.933	11.413	1.677		
149	22/10/2024 17:00	10.309571	19.935	11.413	1.675		
150	22/10/2024 18:00	10.309571	19.933	11.413	1.677		
151	22/10/2024 19:00	10.319769	19.919	11.413	1.701		
152	22/10/2024 20:00	10.329966	19.937	11.413	1.693		
153	22/10/2024 21:00	10.329966	19.935	11.413	1.695		
154	22/10/2024 22:00	10.329966	19.949	11.413	1.681		
155	22/10/2024 23:00	10.319769	19.935	11.413	1.685		
156	23/10/2024 00:00	10.329966	19.926	11.413	1.704		
157	23/10/2024 01:00	10.329966	19.935	11.413	1.695		
158	23/10/2024 02:00	10.329966	19.923	11.413	1.707		
159	23/10/2024 03:00	10.329966	19.926	11.413	1.704		
160	23/10/2024 04:00	10.319769	19.923	11.413	1.697		
161	23/10/2024 05:00	10.319769	19.907	11.413	1.713		
162	23/10/2024 06:00	10.319769	19.926	11.413	1.694		
163	23/10/2024 07:00	10.309571	19.914	11.413	1.696		
164	23/10/2024 08:00	10.309571	19.911	11.413	1.699		
165	23/10/2024 09:00	10.309571	19.909	11.413	1.701		
166	23/10/2024 10:00	10.309571	19.897	11.413	1.713		
167	23/10/2024 11:00	10.309571	19.902	11.413	1.708		

Appendix 7

Geophysical Survey Report

National Bioeconomy Campus Lisheen, Co. Tipperary

Geophysical Survey

Report Status: Final MGX Project Number: 6807 MGX File Reference: 6807f-005.doc 16th October 2024

Confidential Report To:

IGSL Unit F M7 Business Campus Naas Co/ Kildare

Report submitted by: Minerex Geophysics Limited

Issued by:

Unit F4, Maynooth Business Campus Maynooth, Co. Kildare, W23X7Y5 Ireland Tel.: 01-6510030 Email: <u>info@mgx.ie</u>

Author: John Connaughton (Geophysicist)

Reviewer: Hartmut Krahn (Senior Geophysicist)

Subsurface Geophysical Investigations

EXECUTIVE SUMMARY

- 1. Minerex Geophysics Ltd. (MGX) carried out a geophysical survey consisting of EM31 Ground Conductivity, 2D-Resistivity (ERT) and seismic refraction (p-wave) for the ground investigation for a proposed development at the former Lisheen mine site, County Tipperary.
- The main objectives of the survey were to gain information on the location of the former mine entrance, determine the ground conditions under the site, to determine the depth to rock and the overburden thickness, to estimate the strength or stiffness or compaction of overburden and the rock quality and to detect possible karstified rock.
- 3. The data was modelled with a total of eight layers (Layers 1a, 1b, 2a, 2b, 2c, 3a, 3b, 4) including a layer identifying the backfilled mine entrance (Layer 4) using the seismic refraction and 2D-Resistivty models.
- 4. Layers 1a and 1b are described as soft or loose alluvium or soil/fill. The alluvium (1a) is noted crossing the site from south to north and is shown on the interpretation Map 3.
- 5. Layers 2a and 2b are described as poor argillaceous/muddy limestone or very stiff to hard sandy gravelly clay and silt in the south (Layer 2a) and poor dolomitized limestone or very dense clayey silty sand and gravel in the north (Layer 2b).
- 6. Layer 2c is interpreted as poor karstified dolomitized limestone. The location of this karstified limestone is shown on Map 3.
- Layer 3a is described as good to very good argillaceous/muddy limestone. The depth to the top of this layer ranges from 3 – 10m below ground level (bgl).
- 8. Layer 3b is interpreted as good to very good dolomitized limestone. The depth to the top of this layer ranges from 3 10m but is up to 19m deep under the karstified limestone layer.
- 9. The lateral extent of the two rock types are shown on Map 3.
- 10. The boundary between both rock types is interpreted as a geological fault.
- 11. Rotary core logs provided after the survey show the two distinct rock types and tie in well with the interpretation presented here.

CONTENTS

	INTRODUCTION
1.	INTRODUCTION
1.1	Kackground
1.2	2 Objectives
1.3	3 Site Description
1.4	4 Geology
1.5	5 Report
2.	GEOPHYSICAL SURVEY4
2.1	Methodology 4
2.2	2 EM31 Ground Conductivity
2.3	3 2D-Resistivity (ERT)
2.4	Seismic Refraction
2.5	5 Site Work
3.	RESULTS AND INTERPRETATION
3.1	EM31 Ground Conductivity7
3.2	2 2D-Resistivity (ERT)
3.3	3 Seismic Refraction
3.4	Interpretation of Resistivity and Seismic Refraction
4.	CONCLUSIONS11
5.	REFERENCES

List of Tables, Maps, Figures, Plans and Appendices:

Pages	Document Reference
In text	In text
In text	In text
In text	In text
1 x A3	6807f_Drawings.dwg
1 x A3	6807f_Drawings.dwg
1 x A3	6807f_Drawings.dwg
1 x A3	6807f_Drawings.dwg
1 x A3	6807f_Drawings.dwg
	In text In text In text 1 x A3 1 x A3 1 x A3 1 x A3

1. INTRODUCTION

1.1 Background

PECEIVED Minerex Geophysics Ltd. (MGX) carried out a geophysical survey for the National Bioeconomy Campus at the former Lisheen Mine in Co. Tipperary. The survey consisted of EM31 ground conductivity, 2D-Resistivity (ERT) and seismic refraction (p-wave). The survey was commissioned by IGSL.

This survey utilized various complementary geophysical methods to improve final interpretations. The role of geophysics as a non-destructive fast method is to provide a geological interpretation over a wide area to complement direct ground investigations at specific locations. The direct ground investigation results can be used to improve the initial geophysical results and interpretation.

The survey was aimed both at gaining information on the entrance to the former mine as well as determining the depth to rock across the site.

1.2 Objectives

The main objectives of the geophysical survey were:

- Gain information on the location of the entrance to the former mine
- To determine the ground conditions under the site
- To determine the depth to rock and the overburden thickness
- To estimate the strength or stiffness or compaction of overburden materials and the rock quality
- To determine the type of overburden and rock
- To detect lateral changes within the geological layers
- To detect possible karstified rock zones within the rock

1.3 Site Description

The site is located on the grounds of the former Lisheen Mine. According to the report titled "The Lisheen Mine - Closure, Restoration & Aftercare Management Plan" (GAIL, 2020) and the report "Closure, restoration & aftercare management plan - C.R.A.M.P" (The Lisheen Mine, 2016) and the accompanying backfill map, the mine entrance is clearly marked. On the location map (Map 1), the mine's main decline road is represented by black lines.

To the west of the site, there is a fenced-off area, indicated by a cyan line on Map 1, which is designated as a Cautionary Zone (GAIL, 2020). This area is open, relatively flat, and currently unused. Surrounding the site are private roads and tracks to the north, east, and south, while grass fields stretch out to the west.

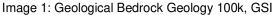
1.4 Geology

Eight Rotary Corehole logs were provided after the survey. Four are within the survey area (RC5 - RC8).

RC 5, in the north of the area describes a light blue/grey to brown grey fine grained slightly metamorphosed, slightly dolomitised limestone. Low RQD values and mentioning of solution show significant weathering and karstification within the rock. The dolomitised limestone is liable to karstification.

RC 6 – 8, in the south of the site describe a light to dark grey/black, fine to medium grained argillaceous/muddy limestone. There is much less weathering noted within these rotary cores. The depth to the top of rock ranges from 1.5 - 8m bgl. This limestone is not liable to karstification.

The rotary core hole locations are indicated on Map 1 and the abbreviated borehole logs are shown on the figures.


Online geological maps of Ireland (GSI, 2024) give the following information:

The overburden geology consists of till derived from limestones with a linear zone of alluvium crossing the site in NNW to SSE direction.

In terms of rock the survey area is underlain by Waulsortian Limestones, described in this area as dolomitised massive fine-grained limestone. There is a W-E fault close to the south of the site and a second close to the north as well as a N-S Fault close to the west of the site.

The Crosspatrick Formation, described as pale-grey cherty crinoidal limestone is present to the north of the northern W-E fault.

There are no karst features recorded near the site.

1.5 Report

This report includes the results and interpretation of the geophysical survey. Maps, figures and tables are included to illustrate the results of the survey. More detailed descriptions of geophysical methods and measurements can be found in GSEG (2002), Milsom (1989) and Reynolds (1997).

The description of soil, rock and the use of geotechnical terms (soft, stiff, dense etc) follows Eurocode (2007) and BSI (2020) standards. The terms are defined in the standards and the physical parameters are related from experience. This geophysical survey has been acquired, processed, interpreted and reported in accordance with these guidelines.

The client provided maps of the site and the digital version was used as the background map in this report. Elevations were surveyed on site and are used in the vertical sections.

The interpretative nature and the non-invasive survey methods must be taken into account when considering the results of this survey and Minerex Geophysics Limited, while using appropriate practice to execute, interpret and present the data, give no guarantees in relation to the existing subsurface.

2. **GEOPHYSICAL SURVEY**

2.1 Methodology

RECEIVED The methodology consisted of using EM31 Ground Conductivity measurements across the Gurvey area, followed by 2D-Resistivity and Seismic Refraction surveying along lines proposed by the client.

Across the whole site, a total of 5 ha of EM31 Ground Conductivity survey was done.

The survey locations are indicated on Map 1. The lines and parameters are tabulated in Table 1.

Resistivity Line	Electrode Spacing/m	Number of Electrodes	Line Length/m
R1	5	38	185
R2	5	39	190
R3	5	38	185
R4	5	36	175
R5	5	18	85
R6	5	77	380
SUM			1200
Seismic Line	Geophone Spacing/m	Number of Geophones	Line Length/m
S1	3	63	186
S2	3		189
S2	3	64	189
S3	3	64 62	183
		64	
S3	3	64 62	183
S3 S4	3 3	64 62 58	183 171

Table 1: Geophysical Survey Locations and Acquisition Parameters

2.2 EM31 Ground Conductivity

The EM31 ground conductivity survey was carried out over the area indicated in Map 1 on lines nominally 10 m apart. Along each line a reading of ground conductivity was taken every second while walking along, thereby resulting in a survey grid of nominally 10 x 2 m. The locations were measured with a Carlson NR3 RTK-GPS sub-meter accuracy SERES DGPS system attached to the EM31 and all data was jointly stored in a data logger. The conductivity meter was a GEONICS EM31 with Archer2 data logger and NAV31 data acquisition software. The instrument was compared to base station readings and no EM drift was recorded.

EM31 ground conductivity determines the bulk conductivity of the subsurface over a typical depth between 0 and 6m bgl. and over a radius of approx. 5m around the instrument. When looking for clay, silt and water infill within rock occurring at relatively shallow depth the EM31 can find anomalous rock zones with a vertical extent of approx. 3m. The measurements are disturbed by metal and other conductive objects in close proximity to the instrument, and therefore no geological interpretations can be made in the vicinity of such man-made objects. Notes were taken by the surveyor in order to account for these in the interpretation.

2.3 2D-Resistivity (ERT)

2D-Resistivity lines were surveyed with electrode spacing of 5m, up to 64 electrodes per set-up and a maximum length of 315m per set-up. The readings were taken with a Tigre Resistivity Meter, Imager Cables, stainless steel electrodes and a laptop with ImagerPro acquisition software.

The data along line R6 was acquired in the roll-along mode to achieve continuous coverage to a depth of 25m between the ends of the lines.

During 2D-Resistivity surveying, data is acquired in the form of linear arrays using a suite of metal electrodes. A current is induced into the ground via a pair of electrodes whilst a potential difference is measured across a second pair of electrodes. This allows for the recording of the apparent resistivity in a two-dimensional arrangement below the line. The data is inverted after the survey to obtain a model of subsurface resistivities. The generated model resistivity values and their spatial distribution can then be related to typical values for different geological materials.

2D-Resistivity has previously proven zones of anomalous or karstified rock with lateral extents of 5m and more.

2.4 Seismic Refraction

Seismic refraction lines were surveyed with geophone spacing of 3m and 24 geophones per set-up resulting in a 69m length per set-up. The recording equipment consisted of a 24 Channel GEOMETRICS ES-3000 engineering seismograph with 4.5Hz vertical geophones. The seismic energy source consisted of a hammer and plate. A zero-delay trigger was used to start the recording. Normally 7 shot points per p-wave set-up were used.

Set-ups were acquired in longer continuous lines using common shot points between set-ups and concatenating into longer lines at the processing stage.

The seismic refraction survey method focuses on propagating p-waves travelling through the subsurface, which are generated by a seismic source. As the wave propagates through the subsurface, its velocity varies as it travels through overburden, rock with different elastic properties, and along geological boundaries. Velocity data is recorded via the surveying equipment, which is then processed, allowing geological layer thicknesses and boundaries to be established.

Seismic Refraction generally determines the depth to horizontal or near horizontal layers where the compaction or strength or rock quality changes with an accuracy of around 20% of the depth to that layer. Where the layers are shallower than the geophone spacing depth deviations of +- 1m to top of layers can occur. Where low velocity layers or shadow zones are present (e.g., below solid ground surface) or where layers dip with more than 20 degrees angles the accuracy becomes much less.

The seismic refraction set-ups with 69m individual length have a reasonable penetration depth of around 15m. An internationally accepted maximum depth estimate for a seismic refraction set-up is 1/6 of the set-up length including offshots. The depth penetration varies according to the velocity structure of the subsurface. In this report we used a depth of 15m bgl. where the seismic modelling was ended as deeper modelling becomes less meaningful.

2.5 Site Work

The data acquisition was carried out between the 28th of August and 4th of September 2023. The weather conditions were fair throughout the acquisition period. Health and safety standards were adhered to at all times. The locations and elevations were surveyed with a Carlson NR3 RTK-GPS to accuracy < 0.05m.

3. **RESULTS AND INTERPRETATION**

The interpretation of geophysical data was executed utilizing the known response of geophysical measurements, typical physical parameters for subsurface features that may underlay the site, and the experience of the authors.

Ground investigation results were available after the survey and the abbreviated borehole logs are indicated on the sections. The overburden was abbreviated as clay, sand and gravel. The rock was generally divided into weathered limestone (based on RQD value < 50%) and limestone (> 50%). There are two distinct limestone types noted in the logs. This can be done only to a certain extend as the rock can be very variable. RQD values, fracture indices and non-intact zones often change rapidly with depth. The small size of a borehole only represents a very small volume of ground while the geophysical survey on the other end of the scale averages over a large volume of ground. These are abbreviated as dolomitised limestone and muddy limestone in the drawings.

3.1 EM31 Ground Conductivity

The EM31 ground conductivity values were merged into one data file and contoured and gridded with the SURFER contouring package. The contours are created by gridding and interpolation and care must be taken when using the data. The contour map is overlaid over the location and base map (Map 2) and the values in milliSiemens/metre (mS/m) are indicated on the colour scale bar.

The conductivity is typical for certain geological material types. Dry and clean Sand and Gravel and most rock types (Dolomitised Limestone) have relatively low conductivities whist clay and clay-rich rock types (Argillaceous/muddy limestone) have high conductivities.

There are a number of variations in ground conductivities across this site. The low conductivities (<4mS/m) which are dominant in the north of the site are interpreted as being an area underlain by dolomitised limestone.

Medium conductivities (4 - 7mS/m) dominant in the south indicate a more argillaceous/muddy limestone.

The line of high (7 - 10mS/m) conductivities crossing SE-NW across the site and through the mine entrance appears to be related to a band of alluvium crossing the site.

There is a high conductivity (>10mS/m) feature in the middle of the site which is interpreted as being the former backfilled entrance to the mine. Other areas of very high conductivity in the west and south are due to fencing along the southern boundary of the site and around a cautionary zone in the west.

Interpretations of the EM31 and other geophysical data is shown on Map 3. The low conductivities (<4mS/m) indicate the dolomitised Limestone. The middle range (4 - 7mS/m) values indicate Argillaceous/Muddy Limestone. Values of 7 - 10mS/m crossing the site are interpreted as an Alluvium. The high (>10mS/m) values indicate interference from metal objects (like the fences) and the backfilled entrance to the mine.

Table 2	: Summary of Interpretation (Conduc	ctivity only)	
Layer	General Conductivity Range (mS/m)	Interpretation	
А	<4	Dolomitised Limestone	7
В	4-7	Argillaceous/muddy Limestone	202
С	7 - 10	Alluvium Overburden	•
D	>10	Interference from metal including the backfilled mine entrance	

 \wedge

3.2 2D-Resistivity (ERT)

The 2D-Resistivity data was positioned and inverted with the RES2DINV inversion package. Line R6, using the roll-along method was concatenated for a joint inversion. The programme uses a smoothness constrained least-squares inversion method to produce a 2D model of the subsurface resistivities from the recorded apparent resistivity values. Three variations of the least squares method are available and for this project the Jacobian Matrix was recalculated for the first three iterations, then a Quasi-Newton approximation was used for subsequent iterations. Each dataset was inverted using seven iterations resulting in a typical RMS error of <3.0%. The resulting models were colour contoured with the same resistivity scale for all lines and they are displayed as cross sections (Figure 1).

Resistivities are characteristic for certain overburden and rock types. If there is a high content of clay minerals (which are electrically conductive) then the overburden resistivity will be lower than as if there is a high content of clastic grains like sand or gravel. The purer the clay and the lower the sand and gravel content, the lower the resistivity. Water content in overburden layers can influence the resistivities, but generally clay content has a more dominating effect.

In limestone areas, karstified rock is defined in this report as a formerly intact clean limestone rock, liable to karstification, that has been partially dissolved by water over long geological time scales and where the cavities and voids have either remained empty (filled by air) or became filled by overburden sediment (clay, silt, sand), weathering product of the broken rock itself or water. This process would lead to a reduction of the resistivity of the overall rock and therefore karstified rock has a lower resistivity than intact clean limestone rock. This is generally indicated by lower resistivities embedded within high resistivity at depth.

The resistivities cover a range typical for materials from clay rich overburden (low resistivities) to fresh strong unweathered bedrock (high resistivities). The ranges have been taken into the consideration for the interpretation. Low resistivity values occur (<125 Ohmm) at the mine entrance and near the surface where alluvium is interpreted. Within the overburden, medium resistivity values (125 to 250 Ohmm) indicate a sandy gravelly clay and silt overburden while high values (>250 Ohmm) indicate a clayey silty sand and gravel. Within the rock, medium Resistivities (<1000Ohmm) are interpreted as a argillaceous/muddy limestone while high resistivities (>1000 Ohmm) indicate a dolomitised limestone. On Line R2 in the north

and at depth are lower resistivities at larger depth than on the rest of the site (<250 Ohmm) and these are CEILED. interpreted as karstified dolomitised limestone.

3.3 Seismic Refraction

The seismic refraction data was positioned and processed with the SEISIMAGER software package to give a layered model of the subsurface. The number of layers has been determined by analysing the seismiciraces and 3 layers were used in the models. All seismic lines were subject to a standardised processing sequence which consisted of a topographic correction which was based on integrated elevation data, first break picking, tomographic inversion, travel-time computation via ray-tracing and velocity modelling. Residual deviations of typically 0.4 to 1.8 msec RMS have been obtained for each line. Following each processing stage QC procedures were adhered to. The resulting layer boundaries are shown as thick lines overlaid on the 2D-Resistivity cross sections (Figure 1). The average seismic velocities obtained within the layers are annotated on the sections as bold black numbers.

The p-wave seismic velocity is closely linked to the density of subsurface materials and to parameters like compaction, stiffness, strength and rock quality. The higher the density of the subsurface materials the higher the seismic velocity. More compacted, stiffer, denser and stronger material will have a higher seismic velocity. For rock, the seismic velocity is higher when the rock is stronger, less weathered and has a higher quality. If the rock is more weathered, broken, fractured, fissured or karstified then the seismic velocity will be reduced compared to that of intact fresh rock.

Because of the above relationship, the seismic refraction method and seismic velocities are suitable to investigate ground where the layers get denser, more compacted and stronger with depth. A disadvantage is that some materials may have the same seismic velocity: Very stiff to hard or very dense highly consolidated overburden and a weathered rock can have the same seismic velocity range (as is the case in the layer 2 below).

The modelled seismic data has created the following layered ground model:

Layer 1 has a thickness of 0.8 - 3m and seismic velocities of 330-450m/s. This overburden would be made ground and soil with a soft or loose stiffness or compaction.

Layer 2 velocities of 2000 - 2200m/s indicate a weathered or karstified rock with poor rock guality or overburden with very stiff to hard or very dense stiffness or compaction. The thickness of this layer varies between 2 and 17m.

Good to very good rock (Layer 3) is indicated by seismic velocities of >4000m/s and the top of this rock varies between 3 and 19m.

3.4 Interpretation of Resistivity and Seismic Refraction

Table 3 summarises the interpretation. The stiffness or compaction of overburden and the rock strength or quality have been estimated from the seismic velocity. The estimation of the excavatability for the bedrock has been made according to the caterpillar chart published in Reynolds (1997). The geotechnical assessment for rippability will have to take factors like rock type and jointing the account and the estimation in this report is solely based on the seismic velocities.

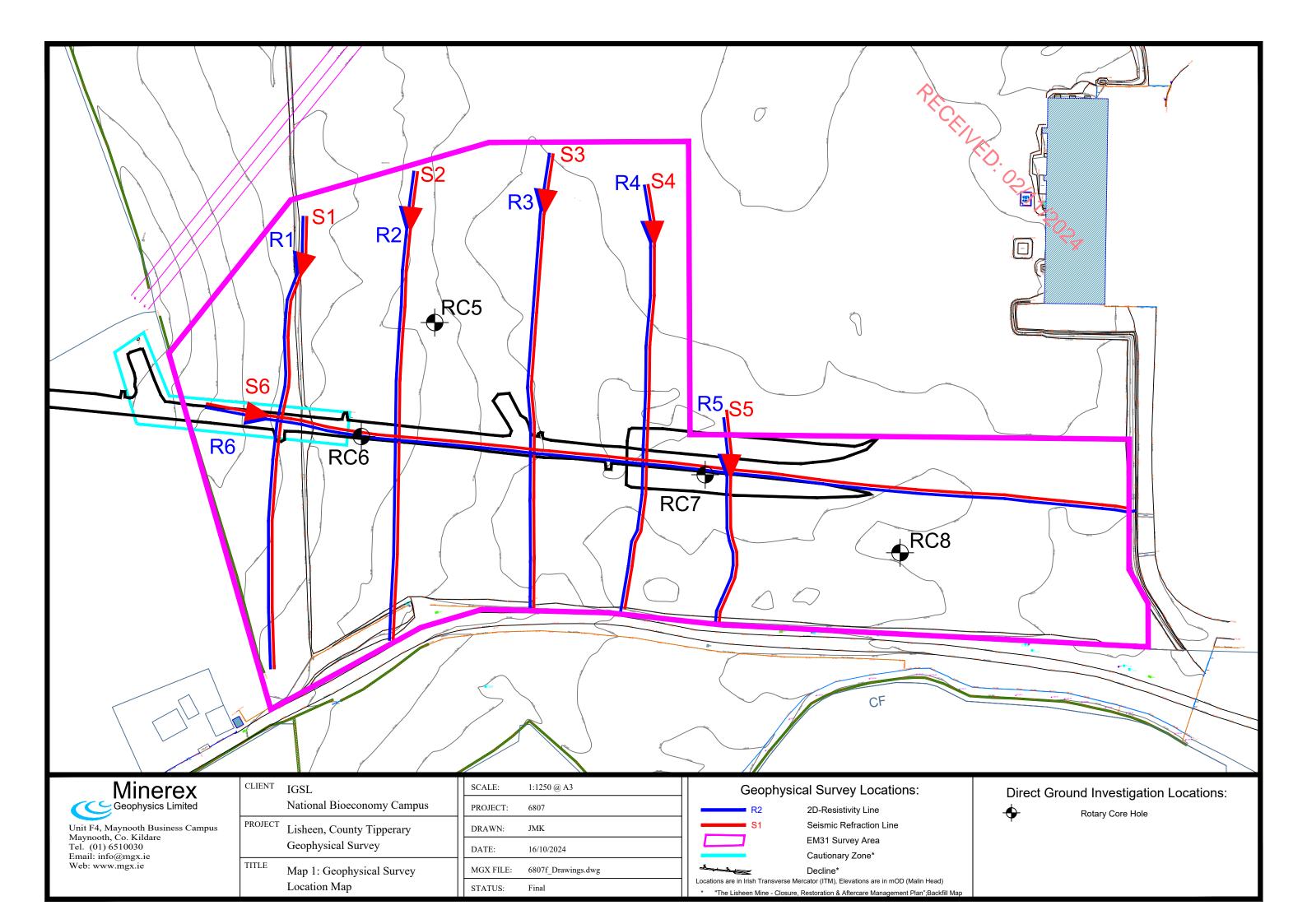
Interpreted cross sections are shown in Figure 2. The interpretation has been made from a available information. For overburden layers and the top of the rock, the seismic refraction data has been used as seismic refraction is the best method to delineate layer boundaries (denoted by numbers in the following table). The resistivity model values have been used to delineate overburden material and rock types (Denoted by letters in the following table). Resistivity data is better suited to show overburden material, rock types and features within the rock while seismic refraction velocities are indicating the change of compaction, stiffness or rock quality with depth. Layer 4 is simply the disturbed data that is interpreted as the backfilled mine entrance.

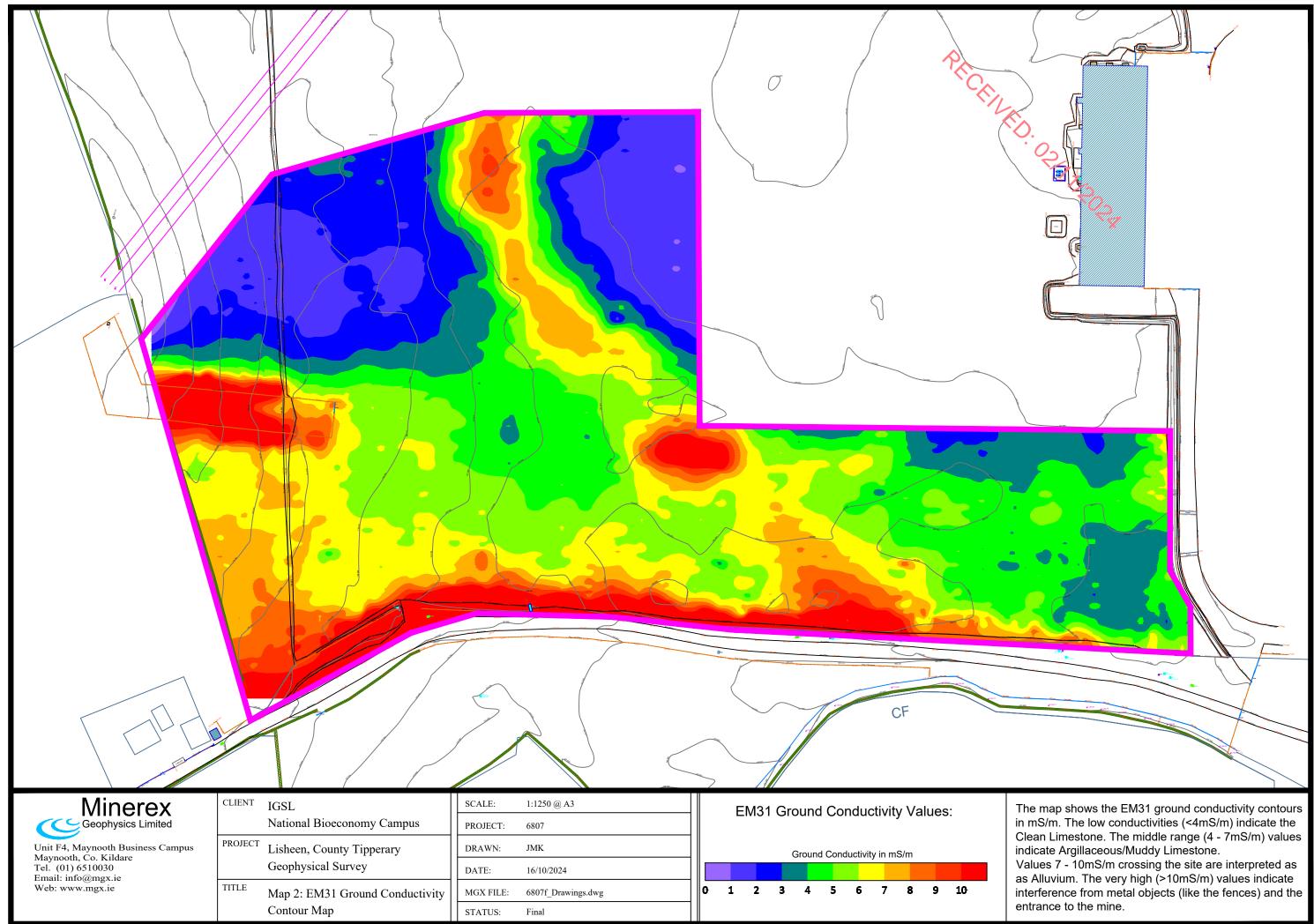
Layer	General Seismic Velocity Range (m/sec)	General Resistivity Range (Ohmm)	Stiffness or Compaction or Rock Quality	Interpretation	Estimated Excavation Method
1a	350-450	<125	Soft	Alluvium	Diggable
1b	350-450	>125	Soft or loose	Soil, Fill or Made Ground	Diggable
2a	2000-2200	125 - 250	Poor Rock or Very Stiff to Hard Overburden	Weathered argillaceous/muddy Limestone or sandy gravelly Clay and Silt	Diggable or rippable to marginal rippable
2b	2000-2200	>250	Poor Rock or very dense overburden	Weathered dolomitised Limestone or clayey silty Sand and Gravel	Diggable or rippable to marginal rippable
2c	2000-2200 At depth	<250	Poor rock	Karstified dolomitised Limestone	Rippable to marginal rippable
3a	4000-4300	<1000	Good to very good rock	Argillaceous/Muddy Limestone	Breaking & Blasting
3b	4000-4300	>1000	Good to very good rock	Dolomitised Limestone	Breaking & Blasting
4	Any	<125	N/A	Backfilled Entrance to Mine	N/A

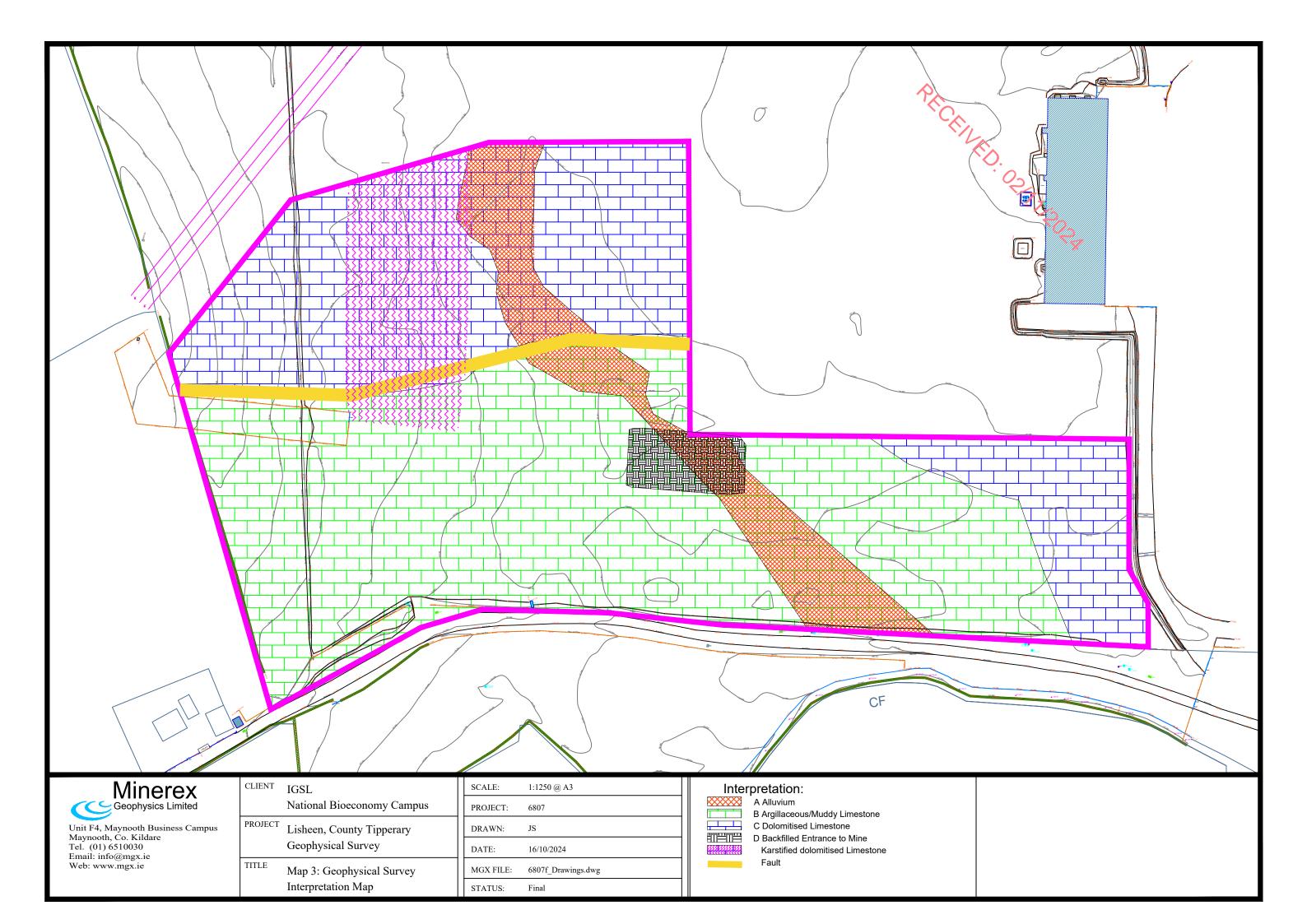
Table 3: Summary of Interpretation

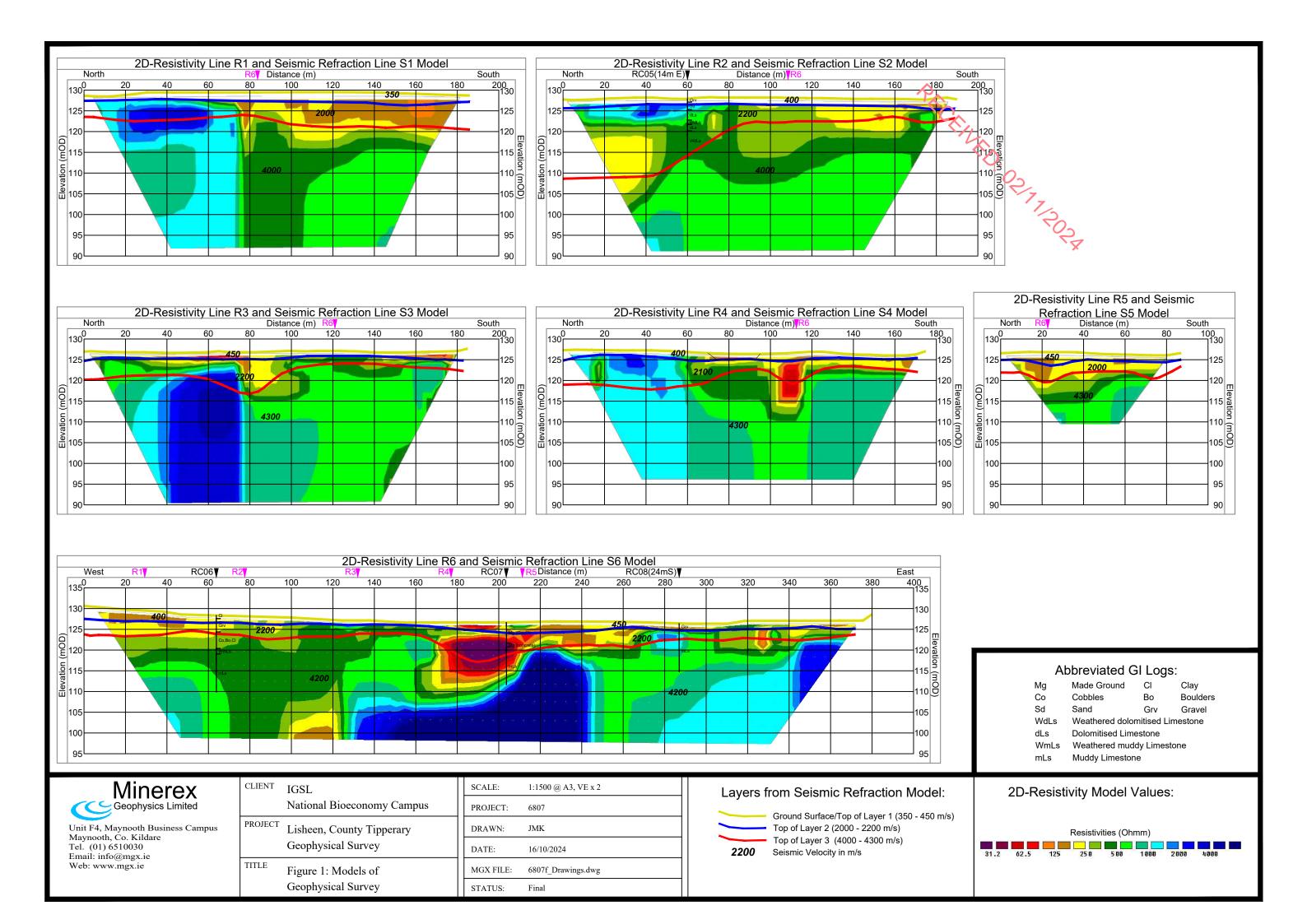
CONCLUSIONS 4.

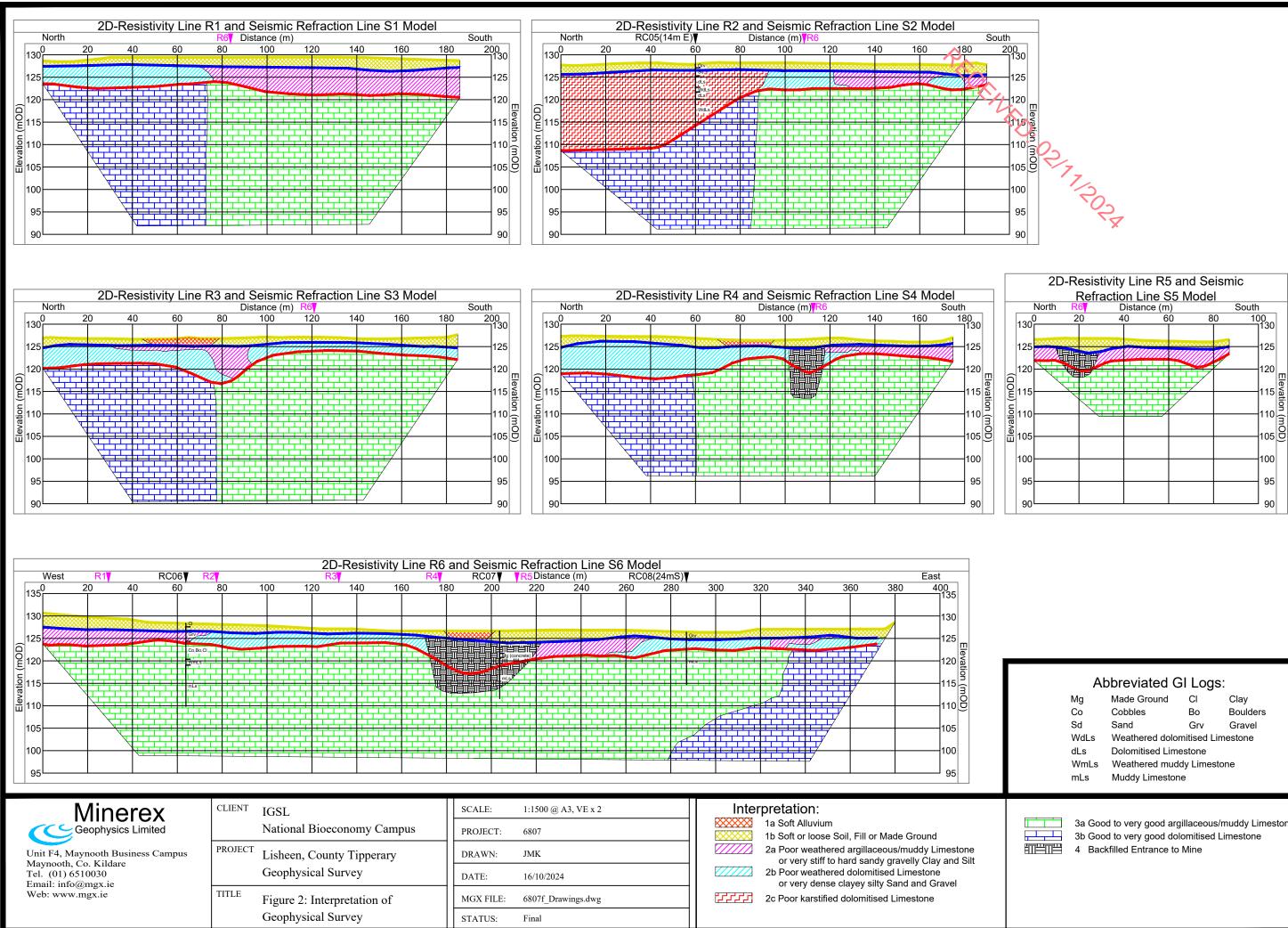
The following conclusions are made:


- RECEIVED Minerex Geophysics Ltd. (MGX) carried out a geophysical survey consisting of EM31 ground conductivity, 2D-Resistivity and seismic refraction (p-wave) surveying for the ground investigation at the former Lisheen Mine in Co. Tipperary.
- At all locations there was a strong correlation between all three geophysical survey methods and the rotary core holes.
- The data was modelled with 3 layers based on seismic velocities and all of the layers were divided using the electrical resistivities. Layer 4 is the backfilled mine entrance.
- The top layer 1 consists of soft or loose materials like alluvium and soil/fill, with thicknesses ranging from 0.8m to 3m.
- Layer 2 with seismic velocities of 2000-2200 was interpreted as weathered or karstified rock or overburden with very stiff to hard or very dense stiffness or compaction, and varying thicknesses from 2m to 17m.
- The deepest geological layer 3 consists of good to very good limestone rock, showing seismic velocities of over 4000 m/s, with top depths varying from 3m to 19m.
- Layer 4 is the disturbed geophysical data that represents the backfilled mine entrance.
- The EM31 conductivity data indicated a high conductivity feature, which corresponds to the former mine entrance. This location shows distinct anomalies due to the presence of metal objects related to the mine entrance.
- The survey highlighted variations in ground conditions across the site, with cleaner limestone to the north and more argillaceous/muddy limestone to the south. An alluvium band of shallow deposits crosses the site, where higher conductivity was observed.
- Both 2D-Resistivity and seismic refraction surveys indicated the potential presence of karstified limestone within the dolomitized limestone. These zones are characterized by lower resistivities and seismic velocities, suggesting poor rock quality or infill from overburden. This zone only occurs on the northern end of Line 2.
- Map 3 is the summary interpretation map made from the EM31 ground conductivity and the other geophysical data. It shows the dolomitised limestone to the north and the argillaceous/muddy limestone to the south.
- A geological fault is interpreted between these two limestone types. The Waulsortian dolomitised limestone is to the north of the fault, the argillaceous/muddy limestone seems to be uplifted by the

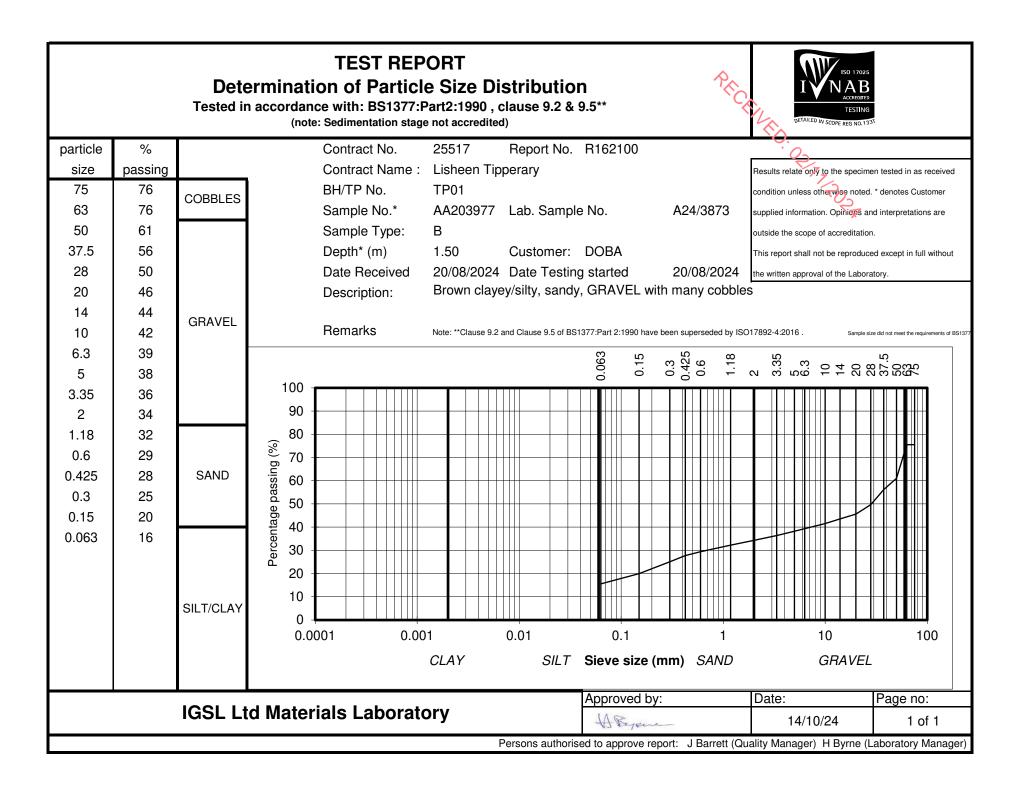

fault as it could be expected to come from the Ballysteen formation under the Waulsortian limestone.

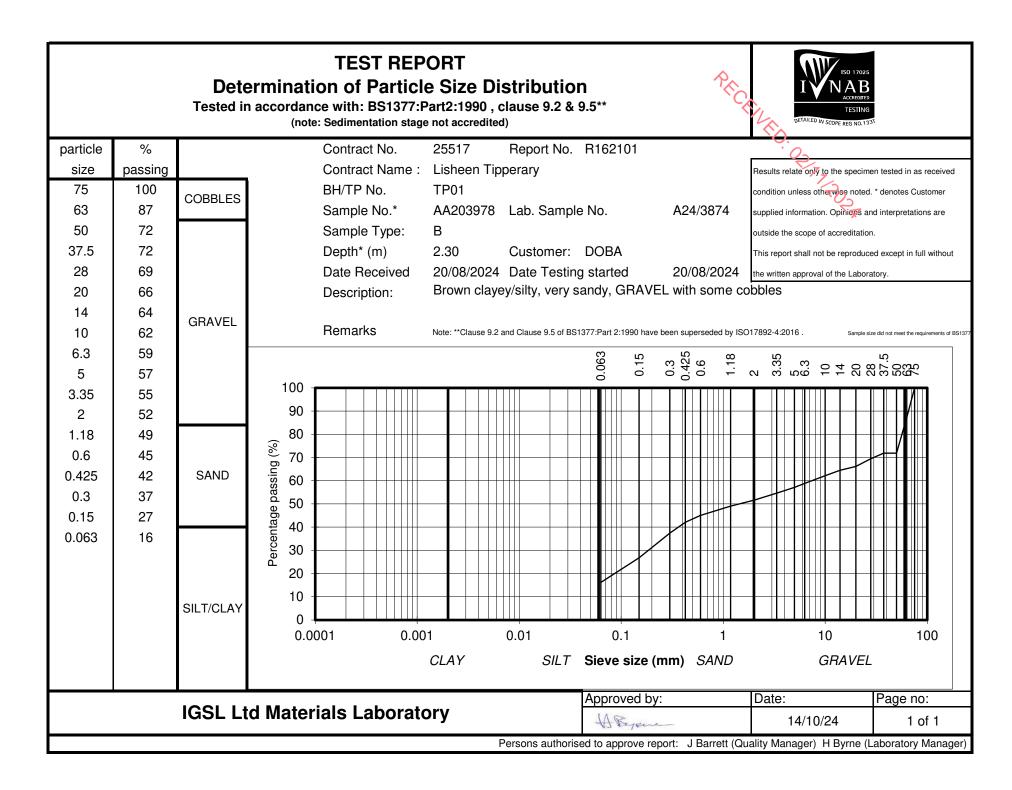

- Map 3 also indicates the zone of karstified limestone within the dolomitised limestone on the northern end of Line R2.
- The interpreted alluvium is indicated on Map 3 along a zone stretching NNW to SSE and generally following the area from the geological map. At the mine entrance this soft layer would have been removed.
- The mine entrance on Map 3 has been interpreted from the anomalous data of the ground material and this location matches the backfill reports for the mine.

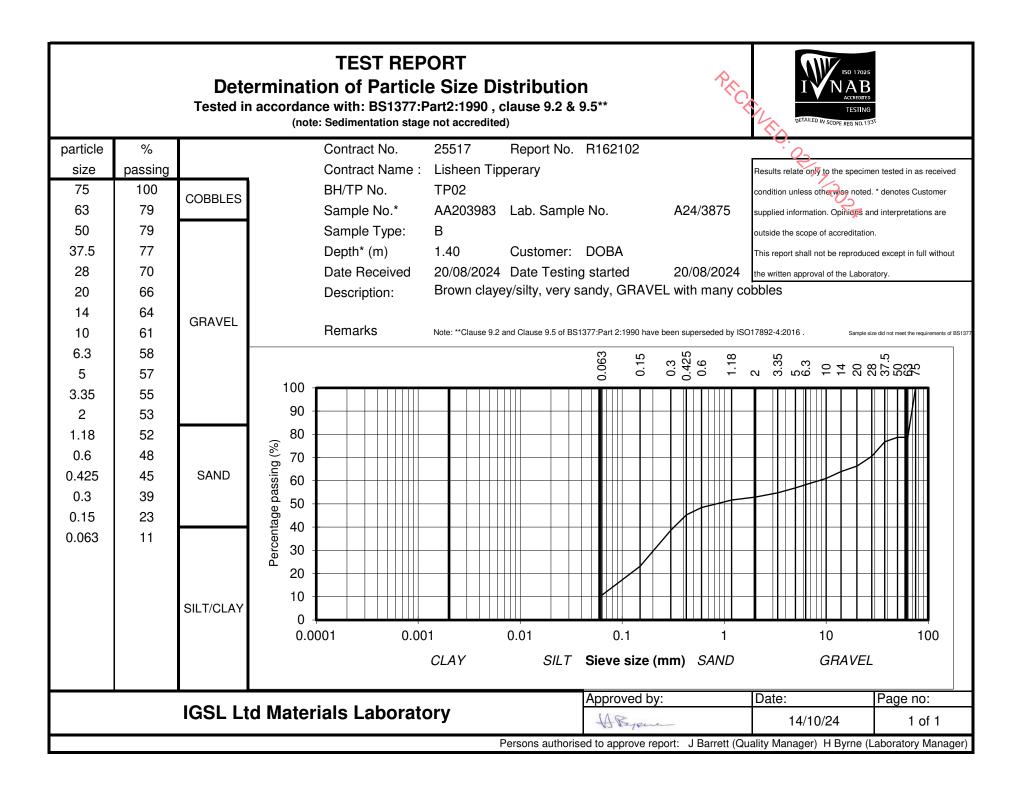

REFERENCES

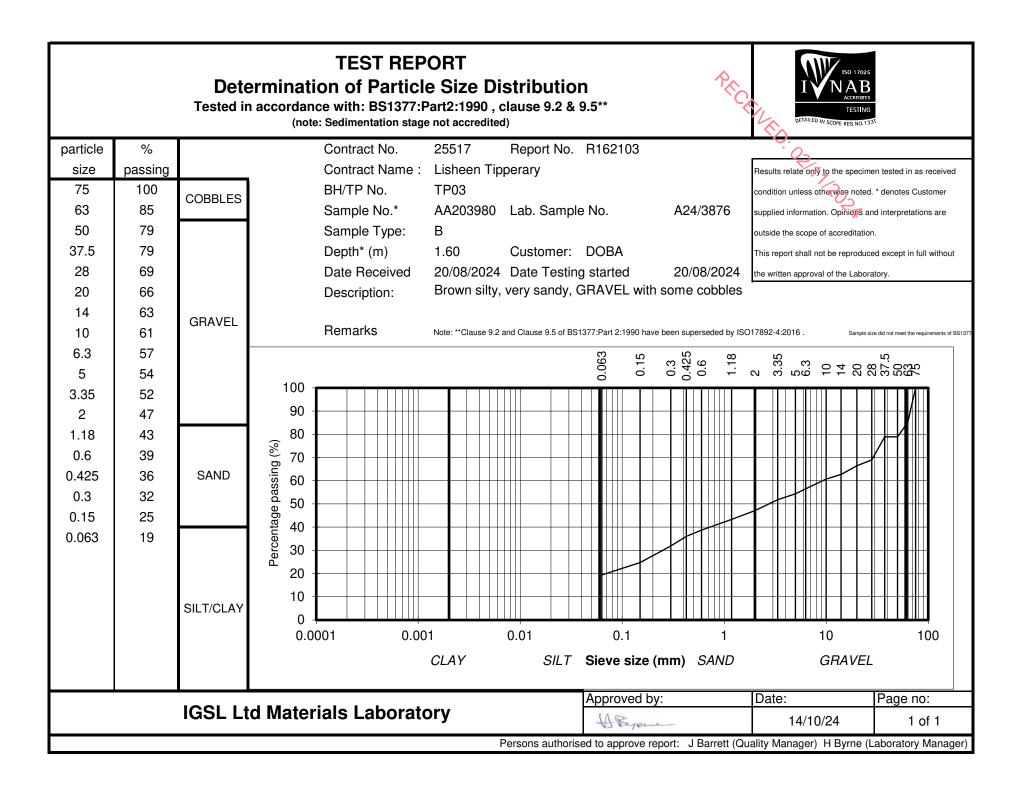

- 1. BSI, 2020. BS5930: 2015+A1:2020, Code of Practice for Ground Investigations, British Standards Institute 2020
- 2. Eurocode, 2007. EN 1997-2:2007. Eurocode 7. Part 2 Ground Investigation and Testing 2007
- 3. GAIL, 2020. The Lisheen Mine Closure, Restoration & Aftercare Management Plan. Golder Associates Ireland Limited, 2020
- 4. **GSEG**, **2002.** Geophysics in Engineering Investigations. Geological Society Engineering Geology Special Publication 19, London, 2002
- 5. GSI, 2024. Online Geological Map of Ireland. Geological Survey of Ireland 2024
- 6. Milsom, 1989. Field Geophysics. John Wiley and Sons, 1989
- 7. Reynolds, 1997. An Introduction to Applied and Environmental Geophysics. John Wiley and Son, 1997
- 8. The Lisheen Mine, 2016. Closure, restoration & aftercare management plan C.R.A.M.P"
- 9. Weaver, 1975. Geological Factors significant in the Assessment of Rippability, 1975

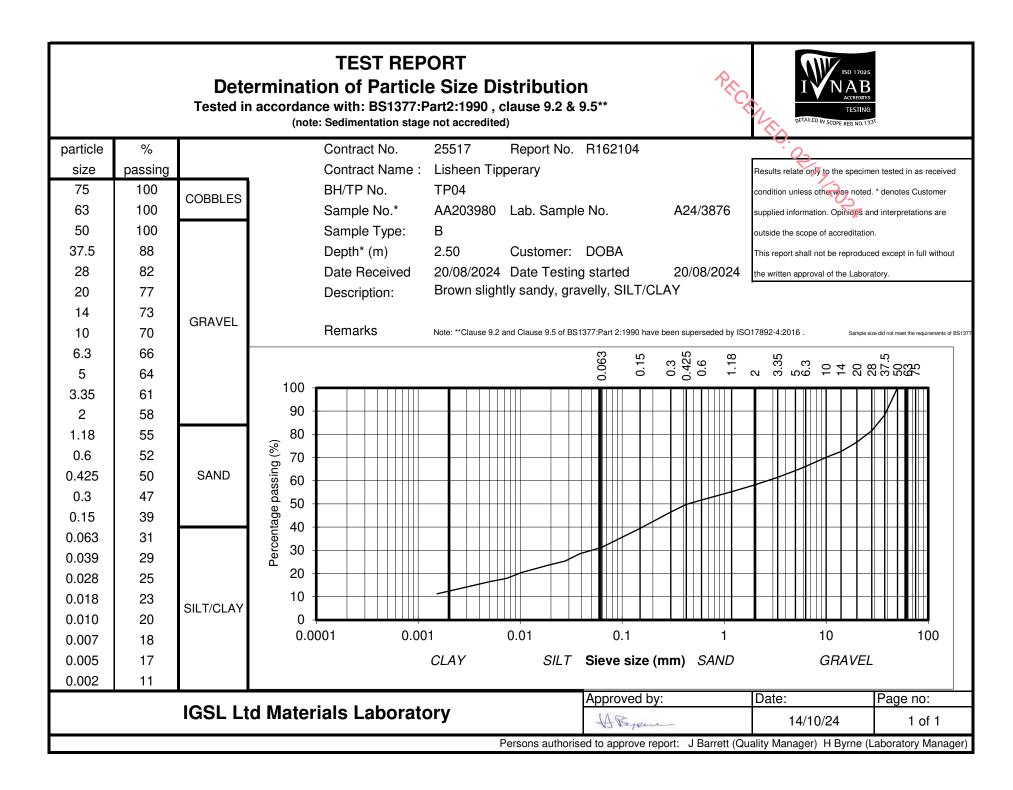
		0	
Mg	Made Ground	CI	Clay
Co	Cobbles	Во	Boulders
Sd	Sand	Grv	Gravel
WdLs	Weathered dolom	nitised Lim	estone
dLs	Dolomitised Lime	stone	
WmLs	Weathered mudd	y Limesto	ne
mLs	Muddy Limestone	9	

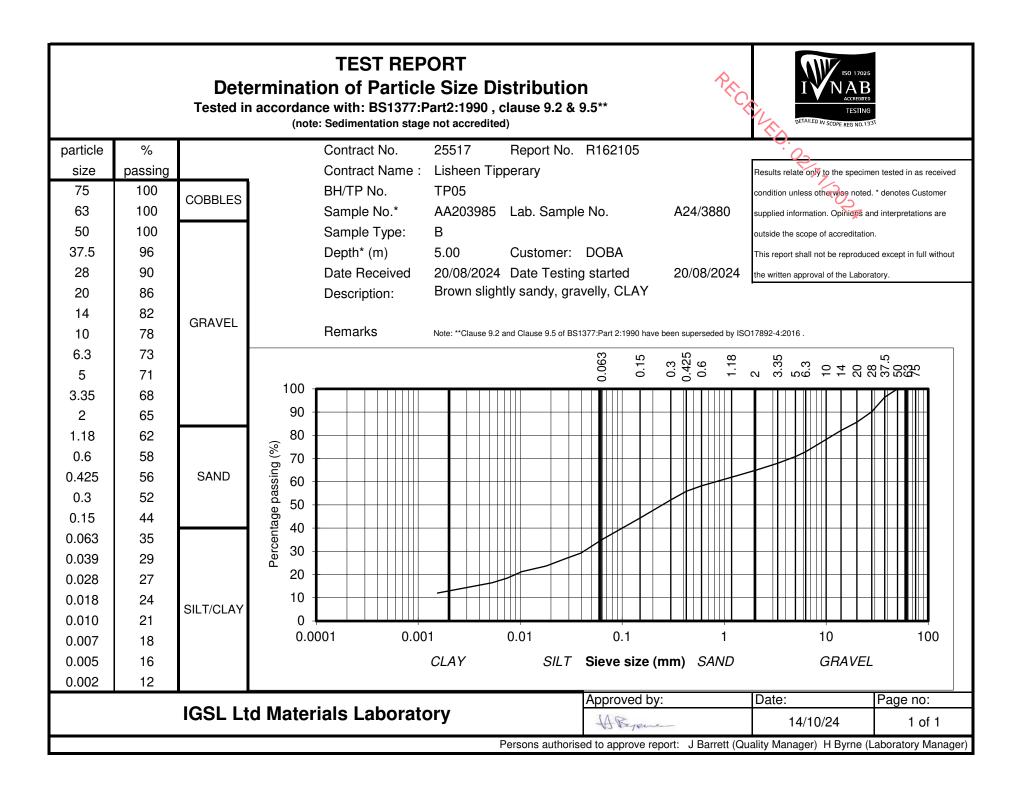

3a Good to very good argillaceous/muddy Limestone

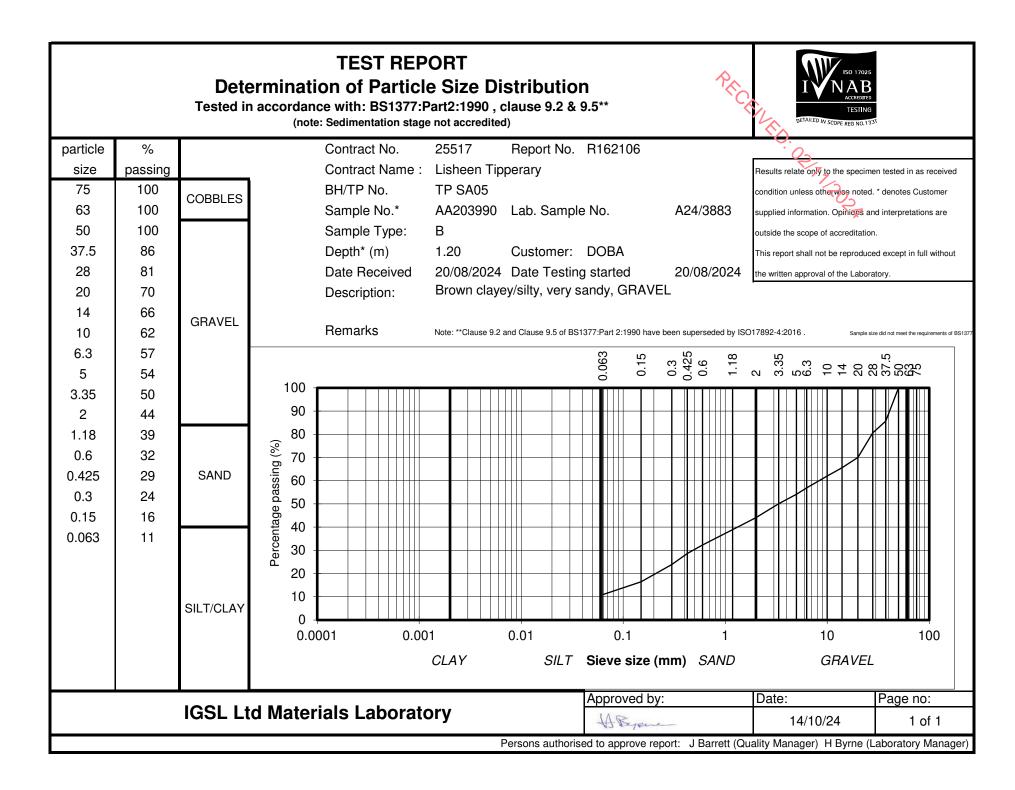

Appendix 8

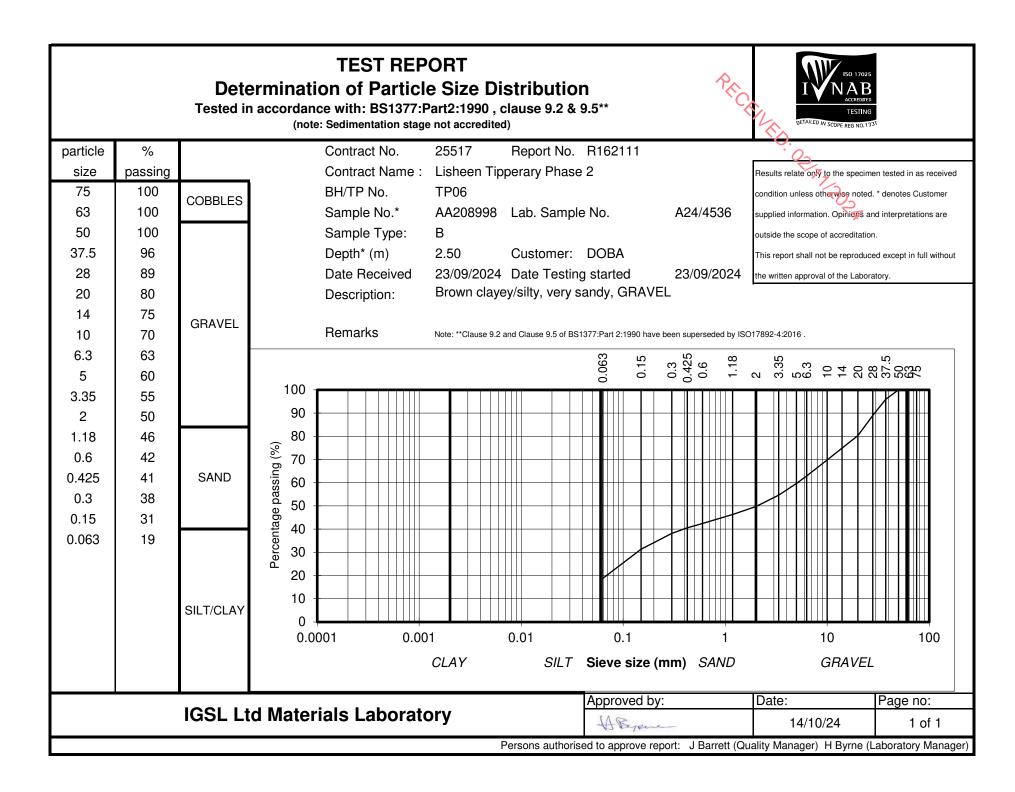

Geotechnical Laboratory Test Records (Soils)

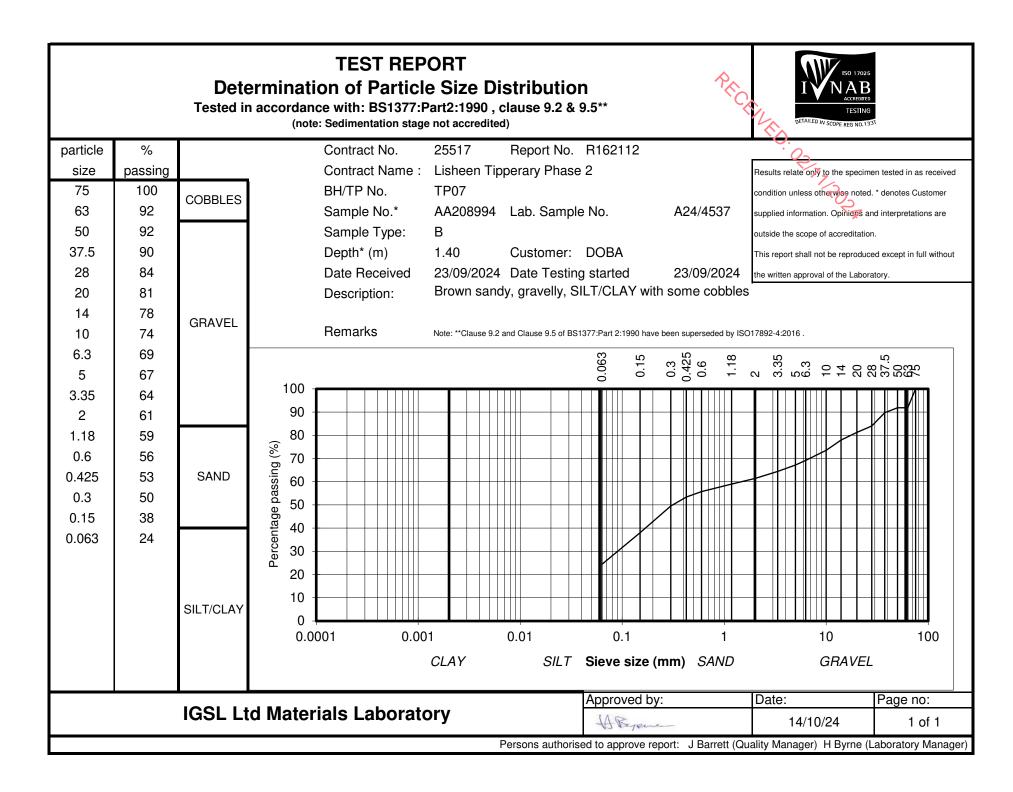


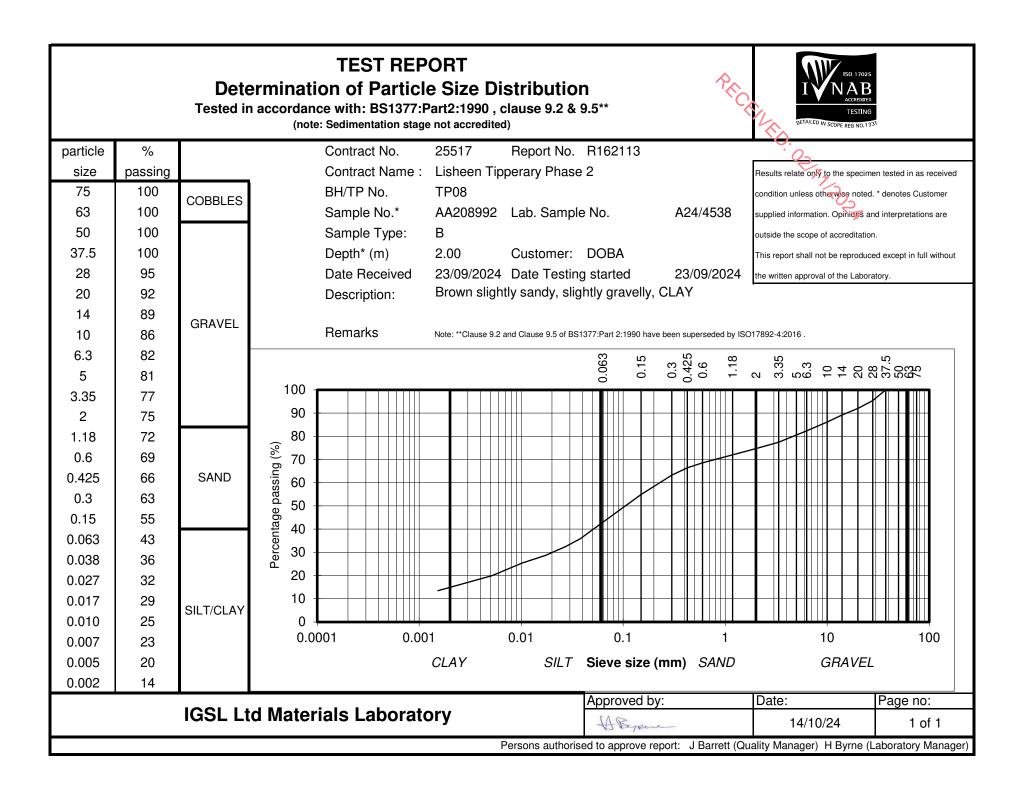

GSL Ltd laterials Lab	ooratory						Т	est Rep	ort			E CAL		
Unit J5, M7 Business Park Newhall, Naas					Determination of Moisture Content, Liquid & Plastic Limits Tested in accordance with BS1377:Part 2:1990, clauses 3.2, 4.3, 4.4 & 5.3** Contract No. 25517 Contract Name: Lisheen Tipperary									
o. Kildare 15 846176	Tested in accordance with BS1377:Part 2:1990, clauses 3.2, 4.3, 4.								3, 4.4 & 5.3)**	· 02/77	TESTING DETAILED IN SCOPE REG NO. 1337		
	Report No.	R162099		Contract	No.	25517		Contract N	lame:	Lisheen Ti	pperary		20.	
	Customer	DOBA												X
	Samples Re	ceived:	20/08/24	Date Tes	sted:	20/08/24								
BH/TP*	Sample No.	Depth* (m)	Lab. Ref	Sample Type*	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity Index	% <425μm	Preparation	Liquid Limit Clause	Classification (BS5930)	Description	
TP01	AA203976	0.6	A24/3872	В	13	35	NP	NP	82	WS	4.4		Brown sandy gravelly SILT	
TP03	AA203980	1.6	A24/3876	В	8.6	25	NP	NP	54	WS	4.4		Brown sandy gravelly SILT	
TP04	AA203987	1.5	A24/3877	В	6.4	20	11	9	59	WS	4.4		Brown sandy gravelly	CLAY
TP05	AA203984	1.0	A24/3879	В	6.4	24	NP	NP	65	WS	4.4	CL	Brown sandy gravelly	SILT
TP05	AA203985	2.0	A24/3880	В	9.0	23	11	12	64	WS	4.4	CL	Brown sandy gravelly CLAY	
TP-SA03	AA203992	1.6	A24/3881	В	11	27	NP	NP	68	WS	4.4		Brown sandy gravelly	SILT
TP-SA05	AA203989	0.6	A24/3882	В	13	39	NP	NP	59	WS	4.4		Brown sandy gravelly	SILT
BH02	AA28311	2.0	A24/3884	В	10	24	NP	NP	62	WS	4.4		Brown sandy gravelly	SILT
BH04	AA228303	1.0	A24/3885	В	12	32	NP	NP	58	WS	4.4		Brown sandy gravelly	SILT
BH04	AA228304	2.0	A24/3886	В	16	29	16	13	59	WS	4.4	CL	Brown sandy gravelly	CLAY
								-						
	Preparation:	WS - Wet sieved AR - As received NP - Non plastic 4.3 Cone Penetro		method	Sample Type:	B - Bulk Distu U - Undisturb		NOTE: **These Opinions and i	e clauses have nterpretations a	been supercede are outside the s	ed by EN 17892 scope of accred	2-1 and EN178 litation. * denot	tes Customer supplied i	nformation.
	Clause:	4.4 Cone Penetro	meter one point		Porcono outho	rizod to oppres	io roporto	This report sha	all not be repro	oduced except in fullwithout written approval from			om the Laboratory. Date	Page
IC	GSL Ltd M	aterials La	boratory		Persons autho	H Byrne (L	·	(long gor)		Approved	nere-		14/10/24	1 of 1

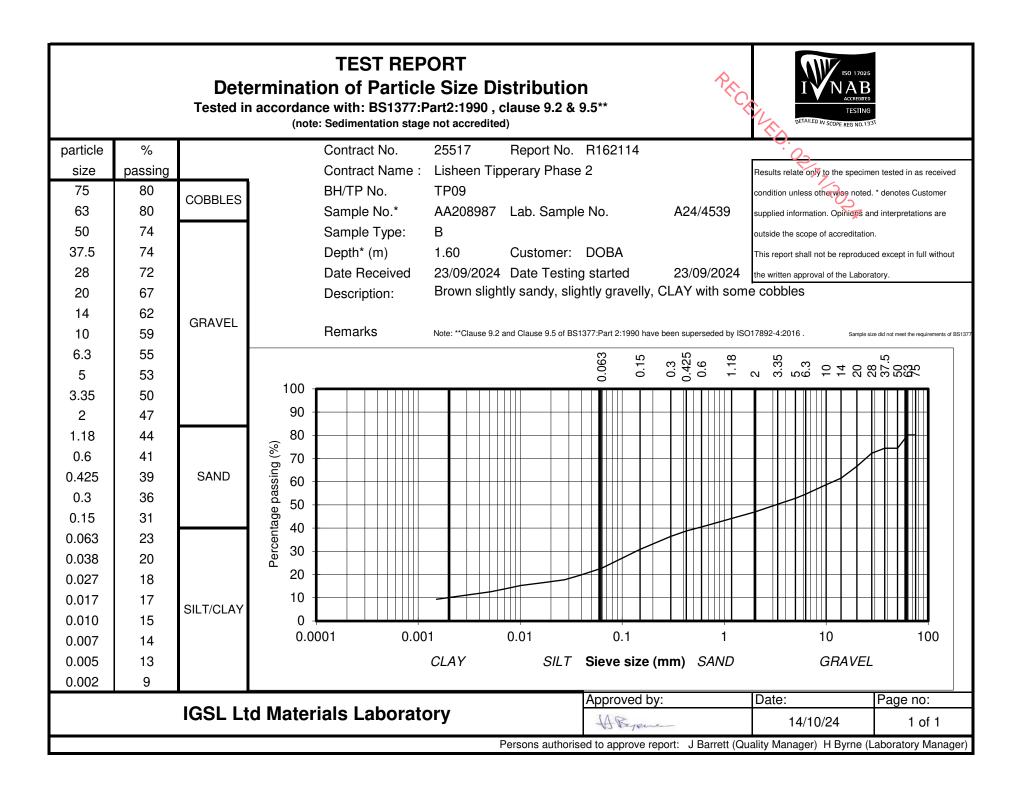


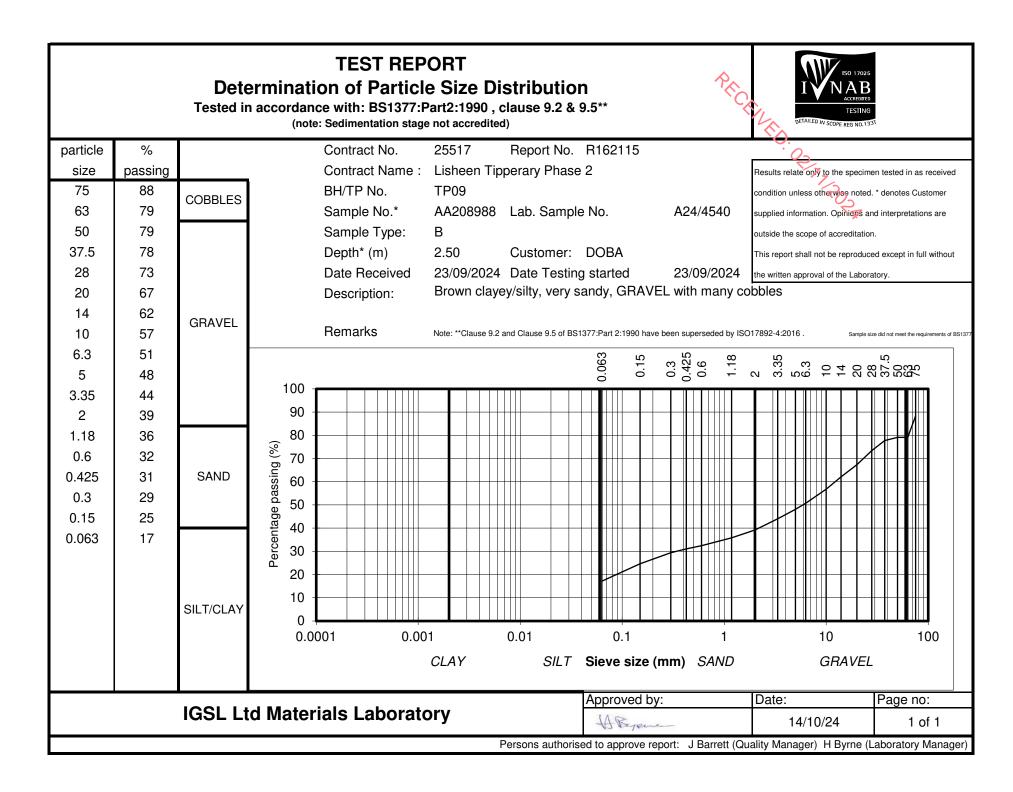


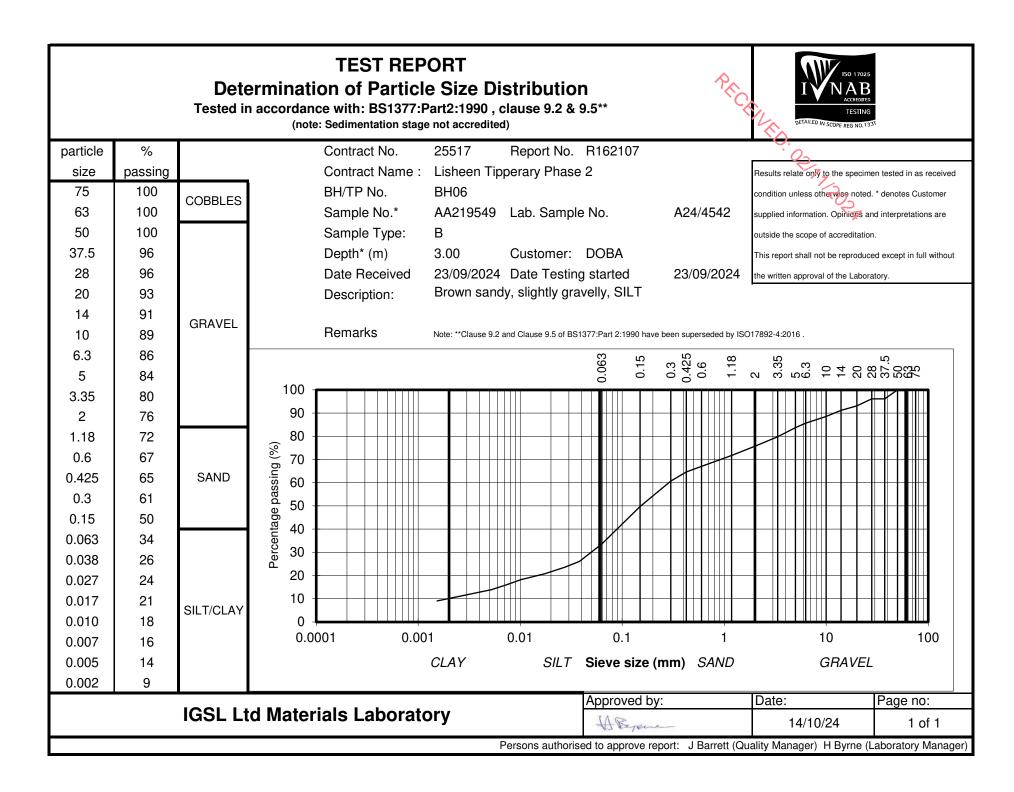


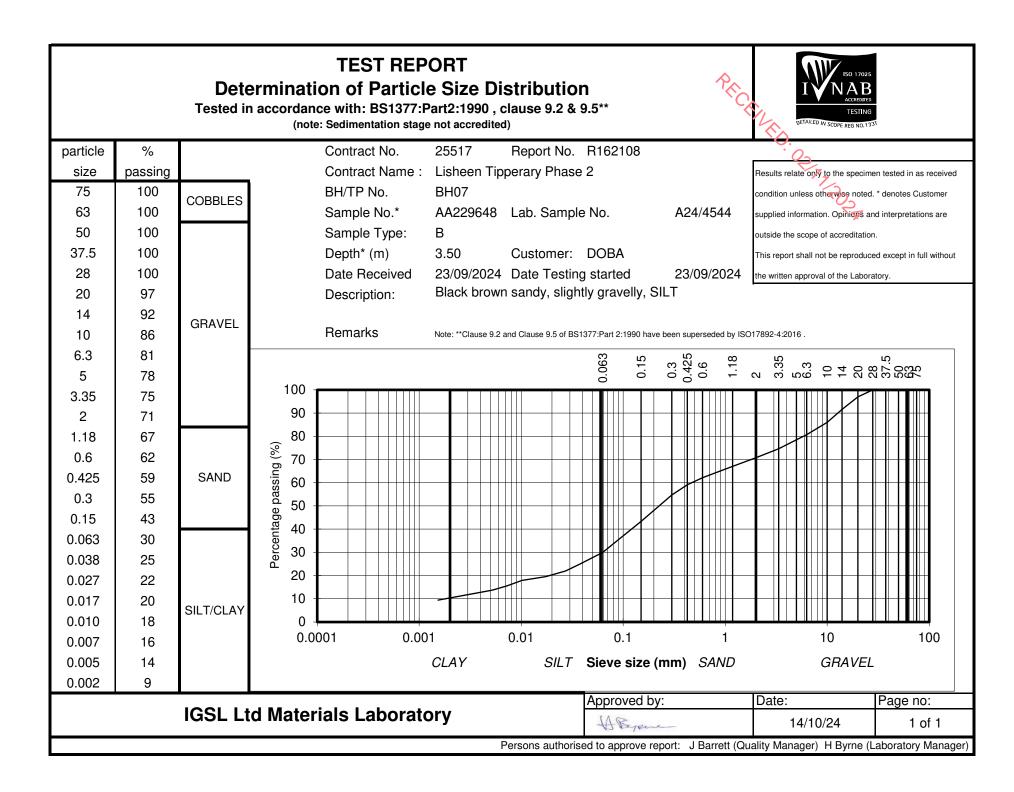







IGSL Ltd Materials Laboratory							Т	est Rep	ort			C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.		50 17075
nit J5, M7 E ewhall, Naa	Business Park as			Determination of Moisture Content, Liquid & Plastic Limits Tested in accordance with BS1377:Part 2:1990, clauses 3.2, 4.3, 4.4 & 5.3** Contract No. 25517 Contract Name: Lisheen Tipperary Phase 2										
o. Kildare 45 846176					Tested in	accordance	e with BS1	377:Part 2:	1990, clau	ses 3.2, 4.3	3, 4.4 & 5.3	3**	277	DETAILED IN SCOPE REG NO. 133
	Report No.	R162106		Contract	No.	25517		Contract N	lame:	Lisheen Ti	pperary Ph	nase 2	202	
	Customer	DOBA												×
	Samples Re	ceived:	23/09/24	Date Tes	ited:	23/09/24								
BH/TP*	Sample No.	Depth* (m)	Lab. Ref	Sample Type*	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity Index	% <425µm	Preparation	Liquid Limit Clause	Classification (BS5930)	Description	
TP06	AA208997	1.5	A24/4535	В	6.4	22	NP	NP	37	WS	4.4		Brown sandy gravelly	SILT
TP08	AA208992	2.0	A24/4538	В	10	28	12	16	63	WS	4.4	CL	Brown silty, very sandy, GRAVE	L with some cobbles
TP09	AA208987	1.6	A24/4539	В	7.1	24	13	11	57	WS	4.4	CL	Brown sandy gravelly	CLAY
TP11	AA208990	1.1	A24/4541	В	9.6	20	12	8	50	WS	4.4	CL	Brown sandy gravelly	SILT
BH06	AA219549	3.0	A24/4542	В	10	21	NP	NP	57	WS	4.4		Brown slightly sandy, g	gravelly, CLAY
BH07	AA229645	1.5	A24/4543	В	22	33	NP	NP	59	WS	4.4		Grey brown sandy grav	velly SILT
BH07	AA229648	3.5	A24/4544	В	25	30	NP	NP	51	WS	4.4		Black/brown sandy gra	velly SILT
BH08	AA219500	0.8	A24/4546	В	8.3	24	13	11	39	WS	4.4	CL	Brown sandy gravelly CLAY	
	Liquid Limit	WS - Wet sieved AR - As received NP - Non plastic 4.3 Cone Penetro 4.4 Cone Penetro		method	Sample Type:	B - Bulk Distu U - Undisturb		NOTE: **These Opinions and i	e clauses have nterpretations		ed by EN 17892 scope of accred	2-1 and EN178 litation. * denot		nformation.
			·		Persons autho	rized to approv	/e reports			Approved		of the second		Page
IC	GSL Ltd M	aterials La	boratory			H Byrne (L	aboratorv I	Manager)			1sue		14/10/24	1 of 1







Appendix 9

Geotechnical Laboratory Test Records (Rock Cores)

RECEIVED. ORIZIROR

							<u> </u>		
		(Dia	metrial) POINT LOAD STI	RENGTH INDEX	TEST DATA				A
Contract:	Lisheen Mine	es, Tipperary	Sample Type: Core Date of test: 19/8/24				L.	\$ 0.	(IGSL)
Contract no.	25517							C	
RC No.	Depth	D (Diameter)	P (failure load)	F	Is (index strength)	ls(50) (index	*UCS		77
	m	mm	kN		Мра	strength) Mpa	MPa	Туре	Orienation
RC01	9.8	78	9.0	1.222	1.47	1.80	36	d	
	10.5	78	12.5	1.222	2.05	2.51	50	d	//×
	10.8	78	12.8	1.222	2.10	2.57	51	d	11
	12.3	78	11.7	1.222	1.92	2.35	47	d	
RC02	3.0	78	17.6	1.222	2.90	3.54	71	d	11
	5.0	78	14.8	1.222	2.43	2.96	59	d	11
	6.0	78	10.0	1.222	1.64	2.01	40	d	11
	8.0	78	16.1	1.222	2.64	3.22	64	d	11
	8.8	78	31.9	1.222	5.24	6.40	128	d	11
	10.0	78	15.1	1.222	2.48	3.03	61	d	11
RC03	4.3	78	18.5	1.222	3.04	3.71	74	d	11
	8.4	78	15.3	1.222	2.52	3.08	62	d	11
	8.9	78	26.1	1.222	4.30	5.25	105	d	11
RC04	3.6	78	8.5	1.222	1.40	1.71	34	d	11
	5.7	78	15.6	1.222	2.56	3.12	62	d	11
	6.8	78	10.1	1.222	1.66	2.03	41	d	11
	8.4	78	24.1	1.222	3.96	4.83	97	d	11
	9.9	78	10.1	1.222	1.65	2.02	40	d	11
	10.0	78	22.4	1.222	3.68	4.50	90	d	11
St	atistical Summ	nary Data	ls(50)	UCS*	*UCS Normal	Distribution Curv	/e		Abbreviations
umber of S	amples Testec	1	19) 19				i	irregular
inimum			1.71	34	0.35			а	axial
verage			3.19	64				b	block
aximum			6.40) 128				d	diametral
tandard Dev			1.27	-	0.2				
pper 95% (Confidence Lim	nit	5.69		0.15			appr	rox. orientation
ower 95% (Confidence Lin	nit	0.69	9 13.86	0.1			we	planes of akness/bedding
omments:						<u> </u>		U	unknown
JCS taken a	as k x Point Lo	ad Is(50): k=		20	0	200	400	Р	perpendicular
									parallel

		(Diam)	etrial) POINT LOAD STRE	NGTH INDEX T	EST DATA		$\rightarrow c$	2.	
Contract:	Lisheen Mine	es, Tipperary	Sample Type: Core Date of test: 19/8/24					L.	
Contract no.	25517								05
RC No.	Depth	D (Diameter)	P (failure load)	F	s (index strength	ls(50) (index	*UCS		77
	m	mm	kN		Мра	strength) Mpa	MPa	Туре	Orienation
RC05	3.2	78	22.0	1.222	3.62	4.42	88	d	192
	4.8	78	18.0	1.222	2.96	3.61	72	d	11 🔽
	6.3	78	16.0	1.222	2.63	3.21	64	d	11
	7.4	78	10.0	1.222	1.64	2.01	40	d	11
	10.0	78	2.0	1.222	0.33	0.40	8	d	11
	11.5	78	6.0	1.222	0.99	1.20	24	d	11
RC06	9.5	78	28.0	1.222	4.60	5.62	112	d	//
	10.5	78	18.0	1.222	2.96	3.61	72	d	11
	11.7	78	22.0	1.222	3.62	4.42	88	d	11
	14.1	78	16.0	1.222	2.63	3.21	64	d	11
	15.8	78	21.0	1.222	3.45	4.22	84	d	11
	17.6	78	30.0	1.222	4.93	6.02	120	d	11
	18.4	78	6.0	1.222	0.99	1.20	24	d	11
RC07	6.4	78	11.0	1.222	1.81	2.21	44	d	11
	8.1	78	26.0	1.222	4.27	5.22	104	d	11
	9.6	78	22.0	1.222	3.62	4.42	88	d	11
	11.9	78	10.0	1.222	1.64	2.01	40	d	11
	12.7	78	10.0	1.222	1.64	2.01	40	d	11
	14.3	78	19.0	1.222	3.12	3.81	76	d	11
	15.0	78	21.0	1.222	3.45	4.22	84	d	//
	atistical Summ		ls(50)	UCS*		al Distribution Cu	irve		Abbreviations
lumber of S	amples Tested	1	20	-				i	irregular
1inimum			0.40		0.3			а	axial
Average			3.35	67	0.25			b	block
/ aximum			6.02	120	0.2			d	diametral
Standard Dev			1.55	31					
	Confidence Lim		6.39	127.87	0.15			appr	ox. orientation 1
ower 95% (Confidence Lin	nit	0.31	6.25	0.1 +/	\uparrow			planes of
					0.05 /	\rightarrow			akness/bedding
<u>comments:</u>					o			U	unknown
UCS taken a	as k x Point Lo	ad Is(50): k=		20	0	200	400	Р	perpendicular
					1			11	parallel

						-	PAR		
		-	netrial) POINT LOAD STRI	ENGTH INDEX	TEST DATA		Ŕ	La	A
Contract:	Lisheen Mine	es, Tipperary	Sample Type: Core Date of test: 19/8/24					<u>کې</u>	IGSL
Contract no.	25517								
RC No.	Depth m	D (Diameter) mm	P (failure load) kN	F	ls (index strength) Mpa	ls(50) (index strength) Mpa	*UCS MPa	Туре	
RC08	2.3 4.0 5.2 6.7 8.4 9.5 11.0	78 78 78 78 78 78 78	26.0 21.0 22.0 7.0 31.0 4.0 22.0	1.222 1.222 1.222 1.222 1.222 1.222 1.222	4.27 3.45 3.62 1.15 5.10 0.66 3.62	5.22 4.22 4.42 1.41 6.22 0.80 4.42	104 84 88 28 124 16 88	d d d d d d d	
Sta	tistical Summ	ary Data	ls(50)	UCS*	*UCS Normal	Distribution Cur	ve		Abbreviations
Number of Sa Minimum Average Maximum Standard Dev	mples Tested		7 0.80 3.81 6.22 1.98	7 16 76 124 40	0.08			i a b d	irregular axial block diametral
Upper 95% C Lower 95% C <u>Comments:</u>	onfidence Lim	iit	7.70 -0.07	-	0.04	200	400		rox. orientation to planes of <u>eakness/bedding</u> unknown perpendicular parallel

Appendix 10

Environmental & Chemical Laboratory Test Records

UKAS 2183 Final Report		RECEILLE	Chemtest trofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070
Report No.:	24-25300-1		
Initial Date of Issue:	20-Aug-2024		CDA A
Re-Issue Details:			
Client	IGSL		
Client Address:	M7 Business Park Naas County Kildare Ireland		
Contact(s):	Darren Keogh		
Project	25517 Lisheen Tipperary (DOBA)		
Quotation No.:		Date Received:	08-Aug-2024
Order No.:		Date Instructed:	08-Aug-2024
No. of Samples:	15		
Turnaround (Wkdays):	7	Results Due:	16-Aug-2024
Date Approved:	20-Aug-2024		
Approved By:			

Details:

David Smith, Technical Director

For details about application of accreditation to specific matrix types, please refer to the Table at the back of this report

Results - Leachate

Client: IGSL			Che	mtest J	ob No.:	24-25300	24-25300	24-25300	24-25300	24-25300	24-25300	24-25300	24-25300	24-25300
Quotation No.:		(Chemte	est Sam	ple ID.:	1847654	1847655	1847657	1847659	1847661	1847663	1847664	1847666	1847667
Order No.:			Clie	nt Samp	le Ref.:	TP01	TP02	TP04	TP05	TP-SA03	BH1	BH2	BH3	BH4
				Sampl	e Type:	SOIL								
				Top Dep	oth (m):	0.6	0.4	0.7	1.00	0.7	1.00	1.00	1.00	1.00
				Date Sa	ampled:	07-Aug-2024	97-Aug-2024	07-Aug-2024						
Determinand	Accred.	SOP	Туре	Units	LOD								0	
Ammonium	U	1220	10:1	mg/l	0.050	0.17	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.10	0.063
Ammonium	N	1220	10:1	mg/kg	0.10	1.7	0.36	0.40	0.53	0.51	0.57	0.36	1.1	0.68
													7	22

Client: IGSL	<u> </u>		Che	ntest .l	ob No.:	24-25300	24-25300	24-25300	24-25300 🗸	24-25300	24-25300	24-25300
Quotation No.:				st Sam		1847654	1847655	1847656	1847657	1847658	1847659	1847660
Order No.:				nt Samp	-	TP01	TP02	TP03	TP04	ZP04	TP05	TP05
			Olici		e Type:	SOIL	SOIL	SOIL	SOIL	SOL	SOIL	SOIL
				Top De		0.6	0.4	0.7	0.7	1.5	1.00	2.00
					ampled:		07-Aug-2024	07-Aug-2024	07-Aug-2024	07-Aug-2024	07-Aug-2024	07-Aug-2024
				Asbest		DURHAM	DURHAM	01 / lug 2024	DURHAM	07 / Kug 2024		07 / Kug 2024
Determinand	HWOL Code	Accred.	SOP	Units		Bortiniu	Bortinit		Bortinan			
ACM Type		U	2192	onits	N/A	-	-		-		7,	
Asbestos Identification		U	2192		N/A	No Asbestos	No Asbestos		No Asbestos		No Asbestos	
NA dia tanàna		N	0000	0/	0.000	Detected	Detected	40	Detected	0.5	Detected	0.4
Moisture		N	2030	%	0.020	15	15	16	9.8	9.5	10 ×	9.1
Soil Colour		N	2040		N/A	Brown	Brown	Brown	Brown	Brown	Brown	Brown
Other Material		Ν	2040		N/A	Stones and Roots	Stones and Roots	Stones and Roots	Stones	Stones	Stones	Stones
Soil Texture		Ν	2040		N/A	Sand	Sand	Sand	Sand	Sand	Sand	Sand
pH (2.5:1) at 20C		N	2010		4.0			8.4		8.6		8.3
Boron (Hot Water Soluble)		М	2120	mg/kg	0.40	< 0.40	< 0.40		< 0.40		< 0.40	
Magnesium (Water Soluble)		Ν	2120	g/l	0.010			< 0.010		< 0.010		< 0.010
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010			< 0.010		< 0.010		< 0.010
Total Sulphur		U	2175	%	0.010			0.010		0.020		0.020
Sulphur (Elemental)		М	2180	mg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0	
Chloride (Water Soluble)		М	2220	g/l	0.010			< 0.010		< 0.010		< 0.010
Nitrate (Water Soluble)		Ν	2220	g/l	0.010			< 0.010		< 0.010		< 0.010
Cyanide (Total)		М	2300	mg/kg	0.50	< 0.50	< 0.50		< 0.50		< 0.50	
Sulphide (Easily Liberatable)		Ν	2325	mg/kg	0.50	4.0	3.9		21		3.7	
Ammonium (Water Soluble)		М	2220	g/l	0.01			< 0.01		< 0.01		< 0.01
Sulphate (Total)		U	2430	%	0.010	0.015	0.093		0.043		0.041	
Sulphate (Acid Soluble)		U	2430	%	0.010			0.021		0.016		0.010
Arsenic		М	2455	mg/kg	0.5	11	22		8.1		15	
Barium		М	2455	mg/kg	0.5	130	110		96		110	
Cadmium		М	2455	mg/kg	0.10	0.75	2.1		< 0.10		1.4	
Chromium		М	2455	mg/kg	0.5	16	9.2		78		19	
Molybdenum		М	2455	mg/kg	0.5	< 0.5	1.3		< 0.5		0.6	
Antimony		Ν	2455	mg/kg	2.0	3.1	< 2.0		< 2.0		2.6	
Copper		М	2455	mg/kg	0.50	14	11		11		18	
Mercury		М	2455	mg/kg	0.05	0.10	0.07		0.05		0.12	
Nickel		М	2455	mg/kg	0.50	38	43		24		51	
Lead		М	2455	mg/kg	0.50	29	110		19		33	
Selenium		М	2455	mg/kg	1	0.96	0.55		< 0.25		0.90	
Zinc		М	2455	mg/kg		63	430		53		100	
Chromium (Trivalent)		N	2490	mg/kg	1.0	16	9.2		78		19	
Chromium (Hexavalent)		N	2490	mg/kg	0.50	< 0.50	< 0.50		< 0.50		< 0.50	
Aliphatic VPH >C5-C6	HS_2D_AL	U	2780	mg/kg	-	< 0.05	< 0.05		< 0.05		< 0.05	
Aliphatic VPH >C6-C7	HS_2D_AL	U	2780	mg/kg		< 0.05	< 0.05		< 0.05		< 0.05	
Aliphatic VPH >C7-C8	HS_2D_AL	U	2780	mg/kg		< 0.05	< 0.05		< 0.05		< 0.05	
Aliphatic VPH >C8-C10	HS_2D_AL	U	2780			< 0.05	< 0.05		< 0.05		< 0.05	

Client: IGSL	1		Chei	mtest Jo	ob No.:	24-25300	24-25300	24-25300	24-25300 🗸	24-25300	24-25300	24-25300
Quotation No.:		(st Sam		1847654	1847655	1847656	1847657	1847658	1847659	1847660
Order No.:				nt Samp		TP01	TP02	TP03	TP04	7F04	TP05	TP05
			0.101		e Type:	SOIL	SOIL	SOIL	SOIL	SOL	SOIL	SOIL
				Top De		0.6	0.4	0.7	0.7	1.5	1.00	2.00
					ampled:	07-Aug-2024	07-Aug-2024	07-Aug-2024	07-Aug-2024	07-Aug-2024	07-Aug-2024	07-Aug-2024
				Asbest		DURHAM	DURHAM	01 7 Kig 202 1	DURHAM	01 7 Kig <u>202</u>		0. 7.0g 202.
Determinand	HWOL Code	Accred.	SOP	Units								
Total Aliphatic VPH >C5-C10	HS_2D_AL	U	2780	mg/kg		< 0.25	< 0.25		< 0.25		< 0.25	
Aliphatic EPH >C10-C12 MC	EH 2D AL #1	M	2690	mg/kg		< 2.0	< 2.0		< 2.0		< 2.0	
Aliphatic EPH >C12-C16 MC	EH_2D_AL_#1	М	2690	mg/kg		< 1.0	1.7		1.4		< 1.0	_
Aliphatic EPH >C16-C21 MC	 EH_2D_AL_#1	М	2690	mg/kg		< 2.0	< 2.0		< 2.0		< 2.0	
Aliphatic EPH >C21-C35 MC	 EH_2D_AL_#1	М	2690	mg/kg		< 3.0	5.0		< 3.0		< 3.0	
Aliphatic EPH >C35-C40 MC	EH_2D_AL_#1	N	2690	mg/kg	10.00	< 10	< 10		< 10		< 10	
Total Aliphatic EPH >C10-C35 MC	EH_2D_AL_#1	М	2690	mg/kg		< 5.0	9.0		< 5.0		< 5.0	
Aromatic VPH >C5-C7	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05	< 0.05		< 0.05		< 0.05	
Aromatic VPH >C7-C8	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05	< 0.05		< 0.05		< 0.05	
Aromatic VPH >C8-C10	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05	< 0.05		< 0.05		< 0.05	
Total Aromatic VPH >C5-C10	HS_2D_AR	U	2780	mg/kg	0.25	< 0.25	< 0.25		< 0.25		< 0.25	
Aromatic EPH >C10-C12 MC	EH_2D_AR_#1	U	2690	mg/kg	1.00	< 1.0	< 1.0		< 1.0		< 1.0	
Aromatic EPH >C12-C16 MC	EH_2D_AR_#1	U	2690	mg/kg	1.00	< 1.0	< 1.0		< 1.0		< 1.0	
Aromatic EPH >C16-C21 MC	EH_2D_AR_#1	U	2690	mg/kg	2.00	5.2	3.7		3.2		4.9	
Aromatic EPH >C21-C35 MC	EH_2D_AR_#1	U	2690	mg/kg	2.00	< 2.0	2.1		< 2.0		< 2.0	
Aromatic EPH >C35-C40 MC	EH_2D_AR_#1	Ν	2690	mg/kg	1.00	< 1.0	< 1.0		< 1.0		< 1.0	
Total Aromatic EPH >C10-C35 MC	EH_2D_AR_#1	U	2690	mg/kg	5.00	5.4	5.8		< 5.0		< 5.0	
Total VPH >C5-C10	HS_2D_Total	U	2780	mg/kg	0.50	< 0.50	< 0.50		< 0.50		< 0.50	
Total EPH >C10-C35 MC	EH_2D_Total_#1	U	2690	mg/kg	10.00	< 10	15		< 10		< 10	
Mineral Oil EPH		N	2670	mg/kg		< 10	< 10		< 10		< 10	
Benzene		М	2760	µg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0	
Toluene		М	2760	µg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0	
Ethylbenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0	
m & p-Xylene		М	2760	µg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0	
o-Xylene		М	2760	µg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0	
Methyl Tert-Butyl Ether		М	2760	µg/kg		< 1.0	< 1.0		< 1.0		< 1.0	
Naphthalene		М	2800	mg/kg		< 0.10	< 0.10		< 0.10		< 0.10	
Acenaphthylene		N	2800	mg/kg		< 0.10	< 0.10		< 0.10		< 0.10	
Acenaphthene		М	2800	mg/kg		< 0.10	< 0.10		< 0.10		< 0.10	
Fluorene		М	2800	mg/kg		< 0.10	< 0.10		< 0.10		< 0.10	
Phenanthrene		М	2800	mg/kg		< 0.10	< 0.10		< 0.10		< 0.10	
Anthracene		М	2800	mg/kg		< 0.10	< 0.10		< 0.10		< 0.10	
Fluoranthene		M	2800	mg/kg		< 0.10	< 0.10		< 0.10		< 0.10	
Pyrene		M	2800	mg/kg		< 0.10	< 0.10		< 0.10		< 0.10	I
Benzo[a]anthracene		M	2800	mg/kg		< 0.10	< 0.10		< 0.10		< 0.10	
Chrysene		M	2800	mg/kg		< 0.10	< 0.10		< 0.10		< 0.10	
Benzo[b]fluoranthene		M	2800	mg/kg		< 0.10	< 0.10		< 0.10		< 0.10	
Benzo[k]fluoranthene		M	2800	mg/kg		< 0.10	< 0.10		< 0.10		< 0.10	
Benzo[a]pyrene		М	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10		< 0.10	

Client: IGSL			Chei	mtest Jo	ob No.:	24-25300	24-25300	24-25300	24-25300 🗸	24-25300	24-25300	24-25300
Quotation No.:		(Chemte	est Sam	ple ID.:	1847654	1847655	1847656	1847657	1847658	1847659	1847660
Order No.:			Clier	nt Samp	le Ref.:	TP01	TP02	TP03	TP04	7P04	TP05	TP05
				Sample	e Type:	SOIL						
				Тор Dep	()	0.6	0.4	0.7	0.7	1.5	1.00	2.00
				Date Sa	ampled:	07-Aug-2024						
				Asbest	os Lab:	DURHAM	DURHAM		DURHAM			
Determinand	HWOL Code	Accred.	SOP	Units	LOD						V7	
Indeno(1,2,3-c,d)Pyrene		М	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10		< 0.10	
Dibenz(a,h)Anthracene		Ν	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10		< 0.40	
Benzo[g,h,i]perylene		М	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10		< 0.10	
Coronene		Ν	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10		< 0.10 ×	
PCB 28		U	2815	mg/kg	0.010	< 0.010	< 0.010		< 0.010		< 0.010	
PCB 52		U	2815	mg/kg	0.010	< 0.010	< 0.010		< 0.010		< 0.010	
PCB 101		U	2815	mg/kg	0.010	< 0.010	< 0.010		< 0.010		< 0.010	
PCB 118		U	2815	mg/kg	0.010	< 0.010	< 0.010		< 0.010		< 0.010	
PCB 153		U	2815	mg/kg	0.010	< 0.010	< 0.010		< 0.010		< 0.010	
PCB 138		U	2815	mg/kg	0.010	< 0.010	< 0.010		< 0.010		< 0.010	
PCB 180		U	2815	mg/kg	0.010	< 0.010	< 0.010		< 0.010		< 0.010	
Tot PCBs Low (7 Congeners)		Ν	2815	mg/kg	0.05	< 0.05	< 0.05		< 0.05		< 0.05	
Total Phenols		М	2920	mg/kg	0.10	< 0.10	< 0.10		< 0.10		< 0.10	

Client: IGSL			Che	mtest J	ob No.:	24-25300	24-25300	24-25300	24-25300 🗸	24-25300	24-25300	24-25300
Quotation No.:		(est Sam		1847661	1847662	1847663	1847664	4847665	1847666	1847667
Order No.:				nt Samp	-	TP-SA03	TP-SA05	BH1	BH2	BH2	BH3	BH4
					e Type:	SOIL	SOIL	SOIL	SOIL	SOL	SOIL	SOIL
				Top De		0.7	0.6	1.00	1.00	2.00	1.00	1.00
				Date Sa	ampled:	07-Aug-2024	07-Aug-2024	07-Aug-2024	07-Aug-2024	07-Aug-2024	07-Aug-2024	07-Aug-2024
				Asbest	os Lab:	DURHAM		DURHAM	DURHAM	, , , , , , , , , , , , , , , , , , ,		DURHAM
Determinand	HWOL Code	Accred.	SOP	Units	LOD						V-7	
АСМ Туре		U	2192		N/A	-		-	-		7.	-
Asbestos Identification		U	2192		N/A	No Asbestos Detected		No Asbestos Detected	No Asbestos Detected		No Asbestos Detectec	No Asbestos Detected
Moisture		N	2030	%	0.020	13	14	13	2.9	16	17	14
Soil Colour		N	2040	70	N/A	Brown	Brown	Brown	Brown	Brown	Brown	Brown
						Biomi	Biotin		Stones and	Stones and	Stones and	Stones and
Other Material		N	2040		N/A	Stones	Roots	Stones	Roots	Roots	Roots	Roots
Soil Texture		N	2040		N/A	Sand	Sand	Sand	Sand	Sand	Sand	Clay
pH (2.5:1) at 20C		N	2010		4.0		8.3			8.4		
Boron (Hot Water Soluble)		М	2120		0.40	< 0.40		< 0.40	< 0.40		< 0.40	< 0.40
Magnesium (Water Soluble)		Ν	2120	g/l	0.010		< 0.010			< 0.010		
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010		0.013			< 0.010		
Total Sulphur		U	2175	%	0.010		0.030			0.010		
Sulphur (Elemental)		М	2180	mg/kg	1.0	< 1.0		< 1.0	< 1.0		< 1.0	< 1.0
Chloride (Water Soluble)		М	2220	g/l	0.010		< 0.010			0.013		
Nitrate (Water Soluble)		N	2220	g/l	0.010		0.012			< 0.010		
Cyanide (Total)		М	2300	mg/kg	0.50	< 0.50		< 0.50	< 0.50		< 0.50	< 0.50
Sulphide (Easily Liberatable)		N	2325	mg/kg		3.0		9.5	3.8		3.4	16
Ammonium (Water Soluble)		М	2220	g/l	0.01		< 0.01			< 0.01		
Sulphate (Total)		U	2430	%	0.010	0.031		0.036	0.049		0.034	0.036
Sulphate (Acid Soluble)		U	2430	%	0.010		0.040			0.010		
Arsenic		М	2455	mg/kg	0.5	10		17	12		12	11
Barium		М	2455	mg/kg		35		84	92		72	71
Cadmium		М	2455	mg/kg		0.11		< 0.10	< 0.10		< 0.10	< 0.10
Chromium		М	2455	mg/kg		5.2		43	32		15	10
Molybdenum		М	2455	mg/kg		3.2		2.8	< 0.5		< 0.5	2.5
Antimony		N	2455	mg/kg		< 2.0		< 2.0	< 2.0		< 2.0	< 2.0
Copper		М	2455	0 0		7.5		15	15		9.2	8.6
Mercury		М	2455	mg/kg	0.05	< 0.05		0.09	0.07		0.06	0.09
Nickel		М	2455		0.50	30		53	30		35	37
Lead		М	2455			12		29	38		19	18
Selenium		М	2455	mg/kg		< 0.25		< 0.25	< 0.25		< 0.25	< 0.25
Zinc		М	2455	mg/kg		52		98	84		72	70
Chromium (Trivalent)		N	2490	mg/kg	1.0	5.2		43	32		15	10
Chromium (Hexavalent)		N	2490	mg/kg	-	< 0.50		< 0.50	< 0.50		< 0.50	< 0.50
Aliphatic VPH >C5-C6	HS_2D_AL	U	2780	mg/kg		< 0.05		< 0.05	< 0.05		< 0.05	< 0.05
Aliphatic VPH >C6-C7	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05		< 0.05	< 0.05		< 0.05	< 0.05
Aliphatic VPH >C7-C8	HS_2D_AL	U	2780	mg/kg		< 0.05		< 0.05	< 0.05		< 0.05	< 0.05
Aliphatic VPH >C8-C10	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05		< 0.05	< 0.05		< 0.05	< 0.05

Client: IGSL			Che	mtest J	ob No.:	24-25300	24-25300	24-25300	24-25300 🗸	24-25300	24-25300	24-25300
Quotation No.:		(est Sam		1847661	1847662	1847663	1847664	4847665	1847666	1847667
Order No.:				nt Samp	•	TP-SA03	TP-SA05	BH1	BH2	8H2	BH3	BH4
					e Type:	SOIL	SOIL	SOIL	SOIL	SOL	SOIL	SOIL
				Top De		0.7	0.6	1.00	1.00	2.00	1.00	1.00
				Date Sa	ampled:	07-Aug-2024						
				Asbest	os Lab:	DURHAM		DURHAM	DURHAM			DURHAM
Determinand	HWOL Code	Accred.	SOP	Units	LOD						V-7	
Total Aliphatic VPH >C5-C10	HS_2D_AL	U	2780	mg/kg	0.25	< 0.25		< 0.25	< 0.25		< 0.25	< 0.25
Aliphatic EPH >C10-C12 MC	EH_2D_AL_#1	М	2690	mg/kg	2.00	< 2.0		< 2.0	< 2.0		< 2.0	< 2.0
Aliphatic EPH >C12-C16 MC	EH_2D_AL_#1	М	2690	mg/kg	1.00	< 1.0		< 1.0	1.9		< 1.0	< 1.0
Aliphatic EPH >C16-C21 MC	EH_2D_AL_#1	М	2690	mg/kg	2.00	< 2.0		< 2.0	2.4		< 2.0	< 2.0
Aliphatic EPH >C21-C35 MC	EH_2D_AL_#1	М	2690	mg/kg	3.00	< 3.0		< 3.0	< 3.0		< 3.0	< 3.0
Aliphatic EPH >C35-C40 MC	EH_2D_AL_#1	N	2690	mg/kg	10.00	< 10		< 10	< 10		< 10	< 10
Total Aliphatic EPH >C10-C35 MC	EH_2D_AL_#1	М	2690	mg/kg		< 5.0		< 5.0	7.1		< 5.0	< 5.0
Aromatic VPH >C5-C7	HS_2D_AR	U	2780	mg/kg		< 0.05		< 0.05	< 0.05		< 0.05	< 0.05
Aromatic VPH >C7-C8	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05		< 0.05	< 0.05		< 0.05	< 0.05
Aromatic VPH >C8-C10	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05		< 0.05	< 0.05		< 0.05	< 0.05
Total Aromatic VPH >C5-C10	HS_2D_AR	U	2780	mg/kg		< 0.25		< 0.25	< 0.25		< 0.25	< 0.25
Aromatic EPH >C10-C12 MC	EH_2D_AR_#1	U	2690	mg/kg	1.00	< 1.0		< 1.0	< 1.0		< 1.0	< 1.0
Aromatic EPH >C12-C16 MC	EH_2D_AR_#1	U	2690	mg/kg	1.00	< 1.0		< 1.0	< 1.0		< 1.0	< 1.0
Aromatic EPH >C16-C21 MC	EH_2D_AR_#1	U	2690	mg/kg	2.00	4.7		3.7	3.5		3.5	3.6
Aromatic EPH >C21-C35 MC	EH_2D_AR_#1	U	2690	mg/kg	2.00	< 2.0		< 2.0	< 2.0		< 2.0	2.2
Aromatic EPH >C35-C40 MC	EH_2D_AR_#1	N	2690	mg/kg		< 1.0		< 1.0	< 1.0		< 1.0	< 1.0
Total Aromatic EPH >C10-C35 MC	EH_2D_AR_#1	U	2690	mg/kg		< 5.0		< 5.0	< 5.0		5.3	5.8
Total VPH >C5-C10	HS_2D_Total	U	2780	mg/kg		< 0.50		< 0.50	< 0.50		< 0.50	< 0.50
Total EPH >C10-C35 MC	EH_2D_Total_#1	U	2690	mg/kg		< 10		< 10	12		< 10	10
Mineral Oil EPH		N	2670	mg/kg	10	< 10		< 10	< 10		< 10	< 10
Benzene		М	2760	µg/kg	1.0	< 1.0		< 1.0	< 1.0		< 1.0	< 1.0
Toluene		М	2760	µg/kg	1.0	< 1.0		< 1.0	< 1.0		< 1.0	< 1.0
Ethylbenzene		М	2760	µg/kg	1.0	< 1.0		< 1.0	< 1.0		< 1.0	< 1.0
m & p-Xylene		М	2760	µg/kg	1.0	< 1.0		< 1.0	< 1.0		< 1.0	< 1.0
o-Xylene		М	2760	µg/kg	1.0	< 1.0		< 1.0	< 1.0		< 1.0	< 1.0
Methyl Tert-Butyl Ether		М	2760	µg/kg	1.0	< 1.0		< 1.0	< 1.0		< 1.0	< 1.0
Naphthalene		М	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10		< 0.10	< 0.10
Acenaphthylene		N	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10		< 0.10	< 0.10
Acenaphthene		М	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10		< 0.10	< 0.10
Fluorene		М	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10		< 0.10	< 0.10
Phenanthrene		М	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10		< 0.10	< 0.10
Anthracene		М	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10		< 0.10	< 0.10
Fluoranthene		М	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10		< 0.10	< 0.10
Pyrene		М	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10		< 0.10	< 0.10
Benzo[a]anthracene		М	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10		< 0.10	< 0.10
Chrysene		М	2800	mg/kg		< 0.10		< 0.10	< 0.10		< 0.10	< 0.10
Benzo[b]fluoranthene		М	2800	mg/kg		< 0.10		< 0.10	< 0.10		< 0.10	< 0.10
Benzo[k]fluoranthene		М	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10		< 0.10	< 0.10
Benzo[a]pyrene		М	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10		< 0.10	< 0.10

Client: IGSL			Chei	mtest Jo	ob No.:	24-25300	24-25300	24-25300	24-25300 🗸	24-25300	24-25300	24-25300
Quotation No.:		(Chemte	st Sam	ple ID.:	1847661	1847662	1847663	1847664	1847665	1847666	1847667
Order No.:			Clier	nt Samp	le Ref.:	TP-SA03	TP-SA05	BH1	BH2	BH2	BH3	BH4
				Sampl	e Type:	SOIL						
				Тор Dep	pth (m):	0.7	0.6	1.00	1.00	2.00	1.00	1.00
				Date Sa	ampled:	07-Aug-2024						
				Asbest	os Lab:	DURHAM		DURHAM	DURHAM			DURHAM
Determinand	HWOL Code	Accred.	SOP	Units	LOD						V7	
Indeno(1,2,3-c,d)Pyrene		М	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10		< 9.10	< 0.10
Dibenz(a,h)Anthracene		N	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10		< 0.40	< 0.10
Benzo[g,h,i]perylene		М	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10		< 0.10	< 0.10
Coronene		N	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10		< 0.10	< 0.10
PCB 28		U	2815	mg/kg	0.010	< 0.010		< 0.010	< 0.010		< 0.010	< 0.010
PCB 52		U	2815	mg/kg	0.010	< 0.010		< 0.010	< 0.010		< 0.010	< 0.010
PCB 101		U	2815	mg/kg	0.010	< 0.010		< 0.010	< 0.010		< 0.010	< 0.010
PCB 118		U	2815	mg/kg	0.010	< 0.010		< 0.010	< 0.010		< 0.010	< 0.010
PCB 153		U	2815	mg/kg	0.010	< 0.010		< 0.010	< 0.010		< 0.010	< 0.010
PCB 138		U	2815	mg/kg	0.010	< 0.010		< 0.010	< 0.010		< 0.010	< 0.010
PCB 180		U	2815	mg/kg	0.010	< 0.010		< 0.010	< 0.010		< 0.010	< 0.010
Tot PCBs Low (7 Congeners)		Ν	2815	mg/kg	0.05	< 0.05		< 0.05	< 0.05		< 0.05	< 0.05
Total Phenols		М	2920	mg/kg	0.10	< 0.10		< 0.10	< 0.10		< 0.10	< 0.10

Client: IGSL				mtest J		24-25300
Quotation No.:		(est Sam		1847668
Order No.:			Clie	nt Samp		BH4
					e Type:	SOIL
				Top De	oth (m):	2.00
				Date Sa	ampled:	07-Aug-2024
				Asbest	os Lab:	
Determinand	HWOL Code	Accred.	SOP	Units	LOD	
АСМ Туре		U	2192		N/A	
Asbestos Identification		U	2192		N/A	
Moisture		Ν	2030	%	0.020	18
Soil Colour		N	2040		N/A	Brown
Other Material		N	2040		N/A	Stones and Roots
Soil Texture		N	2040		N/A	Sand
pH (2.5:1) at 20C		N	2010		4.0	8.5
Boron (Hot Water Soluble)		М	2120	mg/kg	0.40	
Magnesium (Water Soluble)		N	2120	g/l	0.010	< 0.010
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010	< 0.010
Total Sulphur		U	2175	%	0.010	0.020
Sulphur (Elemental)		М	2180	mg/kg	1.0	
Chloride (Water Soluble)		М	2220	g/l	0.010	0.015
Nitrate (Water Soluble)		N	2220	g/l	0.010	0.012
Cyanide (Total)		М	2300	mg/kg	0.50	
Sulphide (Easily Liberatable)		N	2325	mg/kg	0.50	
Ammonium (Water Soluble)		М	2220	g/l	0.01	< 0.01
Sulphate (Total)		U	2430	%	0.010	
Sulphate (Acid Soluble)		U	2430	%	0.010	0.020
Arsenic		М	2455	mg/kg	0.5	
Barium		М	2455	mg/kg	0.5	
Cadmium		М	2455	mg/kg	0.10	
Chromium		М	2455	mg/kg	0.5	
Molybdenum		М	2455	mg/kg	0.5	
Antimony		Ν	2455	mg/kg	2.0	
Copper		М	2455	mg/kg	0.50	
Mercury		М	2455	mg/kg	0.05	
Nickel		М	2455	0	0.50	
Lead		М	2455	mg/kg	0.50	
Selenium		М	2455	mg/kg	0.25	
Zinc		М	2455	mg/kg	0.50	
Chromium (Trivalent)		N	2490	mg/kg	1.0	
Chromium (Hexavalent)		N		mg/kg		
Aliphatic VPH >C5-C6	HS_2D_AL	U	2780	00	0.05	
Aliphatic VPH >C6-C7	HS_2D_AL	U		mg/kg	0.05	
Aliphatic VPH >C7-C8	HS_2D_AL	U	2780	0 0	0.05	
Aliphatic VPH >C8-C10	HS_2D_AL	U	2780	mg/kg	0.05	

PECEINED. 0217712024

Client: IGSL			ntest Jo		24-25300	
Quotation No.:		(ple ID.:	1847668 BH4		
Order No.:						
					e Type:	SOIL
				Тор Dep		2.00
				Date Sa	ampled:	07-Aug-2024
				Asbest	os Lab:	
Determinand	HWOL Code	Accred.	SOP	Units	LOD	
Total Aliphatic VPH >C5-C10	HS_2D_AL	U	2780	mg/kg	0.25	
Aliphatic EPH >C10-C12 MC	EH_2D_AL_#1	М	2690	mg/kg	2.00	
Aliphatic EPH >C12-C16 MC	EH_2D_AL_#1	М	2690	mg/kg	1.00	
Aliphatic EPH >C16-C21 MC	EH_2D_AL_#1	М	2690	mg/kg	2.00	
Aliphatic EPH >C21-C35 MC	EH_2D_AL_#1	М	2690	mg/kg	3.00	
Aliphatic EPH >C35-C40 MC	EH_2D_AL_#1	Ν	2690	mg/kg	10.00	
Total Aliphatic EPH >C10-C35 MC	EH_2D_AL_#1	М	2690	mg/kg	5.00	
Aromatic VPH >C5-C7	HS_2D_AR	U	2780	mg/kg	0.05	
Aromatic VPH >C7-C8	HS_2D_AR	U	2780	mg/kg	0.05	
Aromatic VPH >C8-C10	HS_2D_AR	U	2780	mg/kg	0.05	
Total Aromatic VPH >C5-C10	HS_2D_AR	U	2780		0.25	
Aromatic EPH >C10-C12 MC	EH_2D_AR_#1	U	2690	mg/kg	1.00	
Aromatic EPH >C12-C16 MC	EH_2D_AR_#1	U	2690	mg/kg	1.00	
Aromatic EPH >C16-C21 MC	EH_2D_AR_#1	U	2690		2.00	
Aromatic EPH >C21-C35 MC	EH_2D_AR_#1	U	2690		2.00	
Aromatic EPH >C35-C40 MC	EH 2D AR #1	Ν		mg/kg	1.00	
Total Aromatic EPH >C10-C35 MC	 EH_2D_AR_#1	U	2690	5 5	5.00	
Total VPH >C5-C10	HS_2D_Total	U	2780	00	0.50	
Total EPH >C10-C35 MC	EH 2D Total #1	U	2690		10.00	
Mineral Oil EPH		N	2670	0 0	10	
Benzene		М	2760		1.0	
Toluene		М	2760	. 0 0	1.0	
Ethylbenzene		M	2760		1.0	
m & p-Xylene		M	2760		1.0	
o-Xylene		M	2760		1.0	
Methyl Tert-Butyl Ether		M	2760		1.0	
Naphthalene		M	2800		0.10	
Acenaphthylene		N	2800		0.10	
Acenaphthene		M	2800	00	0.10	
Fluorene		M	2800		0.10	
Phenanthrene		M	2800		0.10	
Anthracene		M		mg/kg	0.10	
Fluoranthene		M		mg/kg	0.10	
Pyrene		M	2800		0.10	
Benzo[a]anthracene		M	2800	0 0	0.10	
Chrysene		M	2800	3 3	0.10	
Benzo[b]fluoranthene		M	2800	mg/kg	0.10	
Benzo[b]fluoranthene			2800	0		
Benzoikiulloranmene		Μ	2800	mg/kg	0.10	

RECEIVED. 02/77/2024

Client: IGSL			Che	mtest Jo	ob No.:	24-25300
Quotation No.:		(Chemte	est Sam	ple ID.:	1847668
Order No.:			Clie	nt Samp	le Ref.:	BH4
				Sample	e Type:	SOIL
				Тор Dep	oth (m):	2.00
				Date Sa	ampled:	07-Aug-2024
				Asbest	os Lab:	
Determinand	HWOL Code	Accred.	SOP	Units	LOD	
Indeno(1,2,3-c,d)Pyrene		М	2800	mg/kg	0.10	
Dibenz(a,h)Anthracene		N	2800	mg/kg	0.10	
Benzo[g,h,i]perylene		М	2800	mg/kg	0.10	
Coronene		N	2800	mg/kg	0.10	
PCB 28		U	2815	mg/kg	0.010	
PCB 52		U	2815	mg/kg	0.010	
PCB 101		U	2815	mg/kg	0.010	
PCB 118		U	2815	mg/kg	0.010	
PCB 153		U	2815	mg/kg	0.010	
PCB 138		U	2815	mg/kg	0.010	
PCB 180		U	2815	mg/kg	0.010	
Tot PCBs Low (7 Congeners)		Ν	2815	mg/kg	0.05	
Total Phenols		М	2920	mg/kg	0.10	

PECEINED. OPIZIADOR

Project: 25517 Lisheen Tipperary	y (DOBA)					PA		
Chemtest Job No:	24-25300					Landi	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1847654					<	Limits	
Sample Ref: Sample ID:	TP01						Stable, Non-	
Sample Location: Top Depth(m):	0.6					Inert Waste	hazardous waste in non-	Hazardous Waste
Bottom Depth(m):						Landfill	hazardous 7	Landfill
Sampling Date:	07-Aug-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				R
Total Organic Carbon	2625		М	%	0.40	3	5	6
Loss On Ignition	2610		М	%	1.8			10
Total BTEX	2760		М	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	М	mg/kg	< 10	500		
Total Of 17 PAHs Lower	2800		Ν	mg/kg	< 1.0	100		
pH at 20C	2010		М		8.4		>6	
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.011		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	s for compliance I	eaching test
				mg/l	mg/kg	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455		U	< 0.0002	< 0.0020	0.5	2	25
Barium	1455		U	0.008	0.084	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0007	0.0068	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0008	0.0076	0.5	10	30
Nickel	1455		U	0.0006	0.0058	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.004	0.042	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.68	6.8	10	150	500
Sulphate	1220		U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020		Ν	57	570	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	7.9	79	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	15

Project: 25517 Lisheen Tipperary	y (DOBA)					PA		
Chemtest Job No:	24-25300					Landi	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1847655						Limits	
Sample Ref:	TP02						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	0.4					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous 7	Landfill
Sampling Date:	07-Aug-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		М	%	6.9	3	5	6
Loss On Ignition	2610		М	%	2.2			70
Total BTEX	2760		М	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	Μ	mg/kg	< 10	500		
Total Of 17 PAHs Lower	2800		N	mg/kg	< 1.0	100		
pH at 20C	2010		М		8.3		>6	
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.010		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate		s for compliance l	-
				mg/l	mg/kg	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455		U	0.0009	0.0093	0.5	2	25
Barium	1455		U	0.008	0.081	20	100	300
Cadmium	1455		U	0.00027	0.0027	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0020	0.020	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0027	0.027	0.5	10	30
Nickel	1455		U	0.0006	0.0058	0.4	10	40
Lead	1455		U	0.0010	0.010	0.5	10	50
Antimony	1455		U	0.0006	0.0060	0.06	0.7	5
Selenium	1455		U	0.0009	0.0090	0.1	0.5	7
Zinc	1455		U	0.011	0.11	4	50	200
Chloride	1220		U	1.6	16	800	15000	25000
Fluoride	1220		U	0.57	5.7	10	150	500
Sulphate	1220		U	4.4	44	1000	20000	50000
Total Dissolved Solids	1020		Ν	62	620	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	6.8	68	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	15

Project: 25517 Lisheen Tipperary	y (DOBA)					PA		
Chemtest Job No:	24-25300					Landi	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1847657					<	Limits	
Sample Ref:	TP04						Stable, Non-	
Sample ID:							reactive	
Sample Location:	0.7						hazardous	Hazardous
Top Depth(m):	0.7					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous 7	Landfill
Sampling Date:	07-Aug-2024			8			Landfill	5
Determinand	SOP	HWOL Code	Accred.	Units				50
Total Organic Carbon	2625		М	%	0.85	3	5	6
Loss On Ignition	2610		М	%	1.4			10
Total BTEX	2760		М	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		Μ	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	М	mg/kg	< 10	500		
Total Of 17 PAHs Lower	2800		N	mg/kg	< 1.0	100		
pH at 20C	2010		М		8.4		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.0080		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate		s for compliance l	•
				mg/l	mg/kg	using B	S EN 12457 at L/	6 10 l/kg
Arsenic	1455		U	0.0005	0.0055	0.5	2	25
Barium	1455		U	0.012	0.12	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0011	0.011	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0013	0.013	0.5	10	30
Nickel	1455		U	0.0006	0.0056	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5
Selenium	1455		U	0.0006	0.0057	0.1	0.5	7
Zinc	1455		U	0.003	0.032	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.25	2.5	10	150	500
Sulphate	1220		U	1.8	18	1000	20000	50000
Total Dissolved Solids	1020		Ν	62	620	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	5.3	53	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	9.8

Project: 25517 Lisheen Tipperary	<u> (DOBA)</u>					PA		
Chemtest Job No:	24-25300					Landi	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1847659						Limits	
Sample Ref: Sample ID:	TP05						Stable, Non-	
Sample Location: Top Depth(m):	1.00					Inert Waste	hazardous waste in non-	Hazardous Waste
Bottom Depth(m):						Landfill	hazardous 7	Landfill
Sampling Date:	07-Aug-2024			-			Landfill	5
Determinand	SOP	HWOL Code	Accred.	Units				50
Total Organic Carbon	2625		М	%	0.66	3	5	6
Loss On Ignition	2610		М	%	1.0			X 0
Total BTEX	2760		М	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	М	mg/kg	< 10	500		
Total Of 17 PAHs Lower	2800		Ν	mg/kg	< 1.0	100		
pH at 20C	2010		М		8.4		>6	
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.0060		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	s for compliance l	eaching test
				mg/l	mg/kg	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455		U	0.0014	0.015	0.5	2	25
Barium	1455		U	0.007	0.067	20	100	300
Cadmium	1455		U	0.00011	0.0011	0.04	1	5
Chromium	1455		U	0.0005	0.0055	0.5	10	70
Copper	1455		U	0.0010	0.0099	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0033	0.033	0.5	10	30
Nickel	1455		U	0.0005	0.0053	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5
Selenium	1455		U	0.0006	0.0060	0.1	0.5	7
Zinc	1455		U	0.003	0.026	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.17	1.7	10	150	500
Sulphate	1220		U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020		Ν	54	540	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	1	U	4.8	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	10

Project: 25517 Lisheen Tipperary	y (DOBA)					PA		
Chemtest Job No:	24-25300					Landi	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1847661						Limits	
Sample Ref: Sample ID:	TP-SA03						Stable, Non-	
Sample Location: Top Depth(m):	0.7					Inert Waste	hazardous waste in non-	Hazardous Waste
Bottom Depth(m):						Landfill	hazardous 7	Landfill
Sampling Date:	07-Aug-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units	1			2
Total Organic Carbon	2625		М	%	0.99	3	5	6
Loss On Ignition	2610		М	%	1.6			10
Total BTEX	2760		М	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	М	mg/kg	< 10	500		
Total Of 17 PAHs Lower	2800		Ν	mg/kg	< 1.0	100		
pH at 20C	2010		М		8.6		>6	
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.011		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	s for compliance I	eaching test
				mg/l	mg/kg	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455		U	< 0.0002	< 0.0020	0.5	2	25
Barium	1455		U	0.008	0.082	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0010	0.010	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0013	0.013	0.5	10	30
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.006	0.059	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.36	3.6	10	150	500
Sulphate	1220		U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020		Ν	46	460	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	5.6	56	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	13

Project: 25517 Lisheen Tipperary	y (DOBA)					PA				
Chemtest Job No: 24-25300					Land Waste Acceptance Criter					
Chemtest Sample ID:	1847663						Limits			
Sample Ref:	BH1						Stable, Non-			
Sample ID:							reactive			
Sample Location:							hazardous	Hazardous		
Top Depth(m):	1.00					Inert Waste	waste in non-	Waste		
Bottom Depth(m):						Landfill	hazardous 7	Landfill		
Sampling Date:	07-Aug-2024						Landfill			
Determinand	SOP	HWOL Code	Accred.	Units						
Total Organic Carbon	2625		М	%	7.4	3	5	6		
Loss On Ignition	2610		М	%	2.2			¥0		
Total BTEX	2760		М	mg/kg	< 0.010	6				
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1				
TPH Total WAC	2670	EH_CU_1D_Total	Μ	mg/kg	< 10	500				
Total Of 17 PAHs Lower	2800		N	mg/kg	< 1.0	100				
pH at 20C	2010		М		8.3		>6			
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.017		To evaluate	To evaluate		
Eluate Analysis				10:1 Eluate	10:1 Eluate		s for compliance l	•		
				mg/l	mg/kg	using B	S EN 12457 at L/	6 10 l/kg		
Arsenic	1455		U	0.0010	0.0097	0.5	2	25		
Barium	1455		U	< 0.005	< 0.050	20	100	300		
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5		
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70		
Copper	1455		U	0.0010	0.010	2	50	100		
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2		
Molybdenum	1455		U	0.0069	0.069	0.5	10	30		
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40		
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50		
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5		
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7		
Zinc	1455		U	0.006	0.065	4	50	200		
Chloride	1220		U	4.6	46	800	15000	25000		
Fluoride	1220		U	0.15	1.5	10	150	500		
Sulphate	1220		U	3.6	36	1000	20000	50000		
Total Dissolved Solids	1020		Ν	58	580	4000	60000	100000		
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-		
Dissolved Organic Carbon	1610		U	3.1	< 50	500	800	1000		

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	13

Project: 25517 Lisheen Tipperary	<u> (DOBA)</u>					PA				
Chemtest Job No: 24-25300					Land Waste Acceptance Criter					
Chemtest Sample ID:	1847664						Limits			
Sample Ref:	BH2						Stable, Non-			
Sample ID:							reactive			
Sample Location:							hazardous	Hazardous		
Top Depth(m):	1.00					Inert Waste	waste in non-	Waste		
Bottom Depth(m):						Landfill	hazardous 7	Landfill		
Sampling Date:	07-Aug-2024						Landfill			
Determinand	SOP	HWOL Code	Accred.	Units				\mathcal{N}		
Total Organic Carbon	2625		М	%	0.67	3	5	6		
Loss On Ignition	2610		М	%	2.9			¥0		
Total BTEX	2760		М	mg/kg	< 0.010	6				
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1				
TPH Total WAC	2670	EH_CU_1D_Total	М	mg/kg	< 10	500				
Total Of 17 PAHs Lower	2800		Ν	mg/kg	< 1.0	100				
pH at 20C	2010		М		8.6		>6			
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.0020		To evaluate	To evaluate		
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	s for compliance l	eaching test		
				mg/l	mg/kg	using B	S EN 12457 at L/	6 10 l/kg		
Arsenic	1455		U	0.0002	0.0024	0.5	2	25		
Barium	1455		U	0.006	0.060	20	100	300		
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5		
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70		
Copper	1455		U	0.0008	0.0079	2	50	100		
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2		
Molybdenum	1455		U	0.0008	0.0077	0.5	10	30		
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40		
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50		
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5		
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7		
Zinc	1455		U	0.006	0.061	4	50	200		
Chloride	1220		U	1.3	13	800	15000	25000		
Fluoride	1220		U	0.61	6.1	10	150	500		
Sulphate	1220		U	< 1.0	< 10	1000	20000	50000		
Total Dissolved Solids	1020		Ν	65	650	4000	60000	100000		
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-		
Dissolved Organic Carbon	1610		U	6.0	60	500	800	1000		

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	2.9

Project: 25517 Lisheen Tipperary	y (DOBA)					PA				
Chemtest Job No: 24-25300					Land Waste Acceptance Criteri					
Chemtest Sample ID:	1847666						Limits			
Sample Ref:	BH3						Stable, Non-			
Sample ID:							reactive			
Sample Location:							hazardous	Hazardous		
Top Depth(m):	1.00					Inert Waste	waste in non-	Waste		
Bottom Depth(m):						Landfill	hazardous 7	Landfill		
Sampling Date:	07-Aug-2024						Landfill			
Determinand	SOP	HWOL Code	Accred.	Units	1			2		
Total Organic Carbon	2625		М	%	5.4	3	5	6		
Loss On Ignition	2610		М	%	2.8			¥0		
Total BTEX	2760		М	mg/kg	< 0.010	6				
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1				
TPH Total WAC	2670	EH_CU_1D_Total	М	mg/kg	< 10	500				
Total Of 17 PAHs Lower	2800		Ν	mg/kg	< 1.0	100				
pH at 20C	2010		М		8.7		>6			
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.0060		To evaluate	To evaluate		
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance l	eaching test		
				mg/l	mg/kg	using B	S EN 12457 at L/	6 10 l/kg		
Arsenic	1455		U	0.0003	0.0033	0.5	2	25		
Barium	1455		U	0.009	0.086	20	100	300		
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5		
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70		
Copper	1455		U	0.0017	0.017	2	50	100		
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2		
Molybdenum	1455		U	0.0031	0.031	0.5	10	30		
Nickel	1455		U	0.0007	0.0068	0.4	10	40		
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50		
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5		
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7		
Zinc	1455		U	0.007	0.075	4	50	200		
Chloride	1220		U	3.4	34	800	15000	25000		
Fluoride	1220		U	0.40	4.0	10	150	500		
Sulphate	1220		U	1.5	15	1000	20000	50000		
Total Dissolved Solids	1020		Ν	67	670	4000	60000	100000		
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-		
Dissolved Organic Carbon	1610		U	5.0	< 50	500	800	1000		

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	17

Project: 25517 Lisheen Tipperary	y (DOBA)					PA				
Chemtest Job No: 24-25300					Landi Waste Acceptance Crite					
Chemtest Sample ID:	1847667					<	Limits			
Sample Ref:	BH4						Stable, Non-			
Sample ID:							reactive			
Sample Location:							hazardous	Hazardous		
Top Depth(m):	1.00					Inert Waste	waste in non-	Waste		
Bottom Depth(m):						Landfill	hazardous 7	Landfill		
Sampling Date:	07-Aug-2024						Landfill			
Determinand	SOP	HWOL Code	Accred.	Units				\mathcal{N}		
Total Organic Carbon	2625		М	%	4.7	3	5	6		
Loss On Ignition	2610		М	%	2.6			¥ 0		
Total BTEX	2760		Μ	mg/kg	< 0.010	6				
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1				
TPH Total WAC	2670	EH_CU_1D_Total	М	mg/kg	< 10	500				
Total Of 17 PAHs Lower	2800		N	mg/kg	< 1.0	100				
pH at 20C	2010		М		8.8		>6			
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.0080		To evaluate	To evaluate		
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	s for compliance I	eaching test		
				mg/l	mg/kg	using B	S EN 12457 at L/	6 10 l/kg		
Arsenic	1455		U	0.0004	0.0042	0.5	2	25		
Barium	1455		U	0.008	0.082	20	100	300		
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5		
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70		
Copper	1455		U	0.0012	0.012	2	50	100		
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2		
Molybdenum	1455		U	0.0022	0.022	0.5	10	30		
Nickel	1455		U	0.0006	0.0058	0.4	10	40		
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50		
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5		
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7		
Zinc	1455		U	0.003	0.030	4	50	200		
Chloride	1220		U	2.3	23	800	15000	25000		
Fluoride	1220		U	0.32	3.2	10	150	500		
Sulphate	1220		U	< 1.0	< 10	1000	20000	50000		
Total Dissolved Solids	1020		Ν	88	880	4000	60000	100000		
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-		
Dissolved Organic Carbon	1610		U	6.5	65	500	800	1000		

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	14

Test Methods

SOP	Title	Parameters included	Method summary	Water Accred.
	pH Value of Waters	pH at 20°C	pH Meter	
	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity at 25°C and Total Dissolved Solids (TDS) in Waters	Conductivity Meter	V.
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.	
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).	LED. OL NROLX
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation	
1920	Phenols in Waters by HPLC		Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.	
2010	pH Value of Soils	pH at 20°C	pH Meter	
2015	Acid Neutralisation Capacity	Acid Reserve	Titration	
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <30°C.	
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930	
	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES	
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.	
2180	Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection	
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry	
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.	
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.	
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p- phenylenediamine.	
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.	
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.	
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5- diphenylcarbazide.	
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.	
2625	Total Organic Carbon in Soils		Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.	
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID	

Test Methods

SOP	Title	Parameters included	Method summary	Water Accred.
2690	EPH A/A Split	Aliphatics: >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C40 Aromatics: >C10–C12, >C12–C16, >C16– C21, >C21–C35, >C35–C40	Acetone/Heptane extraction / GCxGC FIO detection	U.S.
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.	· 0.02/1/2020
2780	VPH A/A Split	Aliphatics: >C5–C6, >C6–C7,>C7–C8,>C8- C10 Aromatics: >C5–C7,>C7-C8,>C8–C10	•	JA V
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS	
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS. Reported PCB 101 results may contain contributions from PCB 90 due to inseparable chromatography.	
2920	Phenols in Soils by HPLC		60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.	
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge	

Report Information

Key

- U
- Μ
- Ν
- UKAS accredited MCERTS and UKAS accredited Unaccredited This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis S this analysis
- This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis
- This analysis has been subcontracted to an unaccredited laboratory Т
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- "greater than" >
- SOP Standard operating procedure
- LOD Limit of detection

This report shall not be reproduced except in full, and only with the prior approval of the laboratory.

Any comments or interpretations are outside the scope of UKAS accreditation.

The Laboratory is not accredited for any sampling activities and reported results relate to the samples 'as received' at the laboratory.

Uncertainty of measurement for the determinands tested are available upon request .

None of the results in this report have been recovery corrected.

All results are expressed on a dry weight basis.

The following tests were analysed on samples 'as received' and the results subsequently corrected to a dry weight basis EPH, VPH, TPH, BTEX, VOCs, SVOCs, PCBs, Phenols.

For all other tests the samples were dried at \leq 30°C prior to analysis.

All Asbestos testing is performed at the indicated laboratory .

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1.

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt. All water samples will be retained for 14 days from the date of receipt. Charges may apply to extended sample storage.

Water Sample Category Key for Accreditation

DW - Drinking Water GW - Ground Water LE - Land Leachate NA - Not Applicable

Report Information

- PL Prepared Leachate
- PW Processed Water
- **RE Recreational Water**
- SA Saline Water
- SW Surface Water
- **TE Treated Effluent**
- TS Treated Sewage
- UL Unspecified Liquid

Clean Up Codes

- NC No Clean Up
- MC Mathematical Clean Up
- FC Florisil Clean Up

HWOL Acronym System

- HS Headspace analysis
- $\mathsf{E}\mathsf{H}$ $\mathsf{Extractable}$ hydrocarbons i.e. everything extracted by the solvent
- CU Clean-up e.g. by Florisil, silica gel
- 1D GC Single coil gas chromatography
- Total Aliphatics & Aromatics
- AL Aliphatics only
- AR Aromatic only
- 2D GC-GC Double coil gas chromatography
- #1 EH_2D_Total but with humics mathematically subtracted
- #2 EH_2D_Total but with fatty acids mathematically subtracted
- + Operator to indicate cumulative e.g. EH+EH_Total or EH_CU+HS_Total
- If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

UKAS UKAS 2183 Final Report		Profile Email:	Chemtest Irofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 info@chemtest.com
Report No.:	24-29760-1		NA CAR
Initial Date of Issue:	26-Sep-2024		2×
Re-Issue Details:			
Client	IGSL		
Client Address:	M7 Business Park Naas County Kildare Ireland		
Contact(s):	Darren Keogh		
Project	25517 Lisheen Tipperary		
Quotation No.:	Q24-34387	Date Received:	17-Sep-2024
Order No.:		Date Instructed:	17-Sep-2024
No. of Samples:	5		
Turnaround (Wkdays):	7	Results Due:	25-Sep-2024
Date Approved:	26-Sep-2024		
Approved By:			
Stor A			

Details:

David Smith, Technical Director

For details about application of accreditation to specific matrix types, please refer to the Table at the back of this report

Results - Leachate

Client: IGSL			Che	mtest Jo	ob No.:	24-29760	24-29760	24-29760
Quotation No.: Q24-34387	Chemtest Sample ID.:			1867007	1867009	1867010		
Order No.:	Client Sample Ref.:			BH6	BH7	BH7		
	Sample Type:			SOIL	SOIL	SOIL		
		Top Depth (m):			1.0	1.0	3.0	
				Date Sa	ampled:	11-Sep-2024	11-Sep-2024	11-Sep-2024
Determinand	Accred.	SOP	Туре	Units	LOD			
Ammonium	U	1220	10:1	mg/l	0.050	< 0.050	0.067	0.19
Ammonium	Ν	1220	10:1	mg/kg	0.10	1.4	0.93	2.4

Client: IGSL		Chemtest Job No.:			24-29760	24-29760	24-29760	24-29760 🥖	24-29760	
Quotation No.: Q24-34387		Chemtest Sample ID.:		1867007	1867008	1867009	1867010	1867011		
Order No.:		Client Sample Ref.:		BH6	BH6	BH7	BH7	EPI7		
				Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL
		Top Depth (m):		1.0	1.0 2.0 1.0 3.0	3.50				
				Date Sa	ampled:	11-Sep-2024	11-Sep-2024	11-Sep-2024	11-Sep-2024	11-Sep-2024
			-	Asbest	os Lab:	DURHAM		DURHAM	DURHAM	
Determinand	HWOL Code	Accred.	SOP	Units						
АСМ Туре		U	2192		N/A	-		-	-	
Asbestos Identification		U	2192		N/A	No Asbestos Detected		No Asbestos Detected	No Asbestos Detected	11-Sep-2024
Moisture		N	2030	%	0.020	15	12	11	13	17
Soil Colour		Ν	2040		N/A	Brown	Brown	Brown	Brown	Brown
Other Material		N	2040		N/A	Stones	Roots and Stones	Stones and Roots	Stones	Stones and Roots
Soil Texture		N	2040		N/A	Clay	Clay	Clay	Clay	Clay
pH (2.5:1) at 20C		N	2010		4.0		8.8	,		8.3
Boron (Hot Water Soluble)		M	2120	mg/kg		< 0.40		< 0.40	< 0.40	
Magnesium (Water Soluble)		N	2120	g/l	0.010		< 0.010			< 0.010
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010		< 0.010			0.044
Total Sulphur		U	2175	%	0.010		0.020			0.090
Sulphur (Elemental)		М	2180	mg/kg	1.0	< 1.0		3.0	6.4	
Chloride (Water Soluble)		М	2220	g/l	0.010		< 0.010			< 0.010
Nitrate (Water Soluble)		Ν	2220	g/l	0.010		< 0.010			0.012
Cyanide (Total)		М	2300	mg/kg	0.50	< 0.50		< 0.50	< 0.50	
Sulphide (Easily Liberatable)		Ν	2325	mg/kg	0.50	3.5		4.7	5.9	
Ammonium (Water Soluble)		М	2220	g/l	0.01		< 0.01			< 0.01
Sulphate (Total)		U	2430	%	0.010	0.019		0.069	0.12	
Sulphate (Acid Soluble)		U	2430	%	0.010		0.073			0.063
Arsenic		М	2455	mg/kg	0.5	10		11	5.8	
Barium		М	2455	mg/kg	0.5	97		110	78	
Cadmium		М	2455	mg/kg	0.10	1.4		1.3	1.1	
Chromium		М	2455	mg/kg	0.5	15		15	7.5	
Molybdenum		М	2455	mg/kg		0.8		0.7	< 0.5	
Antimony		Ν	2455	mg/kg		< 2.0		< 2.0	< 2.0	
Copper		М	2455	mg/kg		12		19	7.2	
Mercury		M	2455	mg/kg		0.14		0.09	0.05	
Nickel		M	2455			34		54	15	
Lead		M	2455	mg/kg		30		32	48	
Selenium		M	2455	mg/kg	0.25	1.7		2.3	0.86	
		M	2455	mg/kg		55		170	170	
Chromium (Trivalent)		N	2490	mg/kg	1.0	15		15	7.5	
Chromium (Hexavalent)		N	2490	mg/kg		< 0.50		< 0.50	< 0.50	
Aliphatic VPH >C5-C6	HS_2D_AL	U	2780	mg/kg		< 0.05		< 0.05	< 0.05	
Aliphatic VPH >C6-C7	HS_2D_AL	U	2780	mg/kg		< 0.05		< 0.05	< 0.05	
Aliphatic VPH >C7-C8	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05		< 0.05	< 0.05	
Aliphatic VPH >C8-C10	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05		< 0.05	< 0.05	

Client: IGSL			Che	mtest Jo	ob No.:	24-29760	24-29760	24-29760	24-29760 🗸	24-29760
Quotation No.: Q24-34387		Chemtest Sample ID.:		1867007	1867008	1867009	1867010	1867011		
Order No.:		Client Sample Ref.:		BH6	BH6	BH7	BH7	EH7		
				Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL
				Top Dep	oth (m):	1.0	2.0	1.0	3.0	3.50
				Date Sa	ampled:	11-Sep-2024	11-Sep-2024	11-Sep-2024	11-Sep-2024	11-Sep-2024
				Asbest	os Lab:	DURHAM		DURHAM	DURHAM	•
Determinand	HWOL Code	Accred.	SOP	Units	LOD					
Total Aliphatic VPH >C5-C10	HS_2D_AL	U	2780	mg/kg	0.25	< 0.25		< 0.25	< 0.25	
Aliphatic EPH >C10-C12 MC	EH_2D_AL_#1	М	2690	mg/kg	2.00	< 2.0		< 2.0	< 2.0	
Aliphatic EPH >C12-C16 MC	EH_2D_AL_#1	М	2690	mg/kg	1.00	< 1.0		< 1.0	< 1.0	
Aliphatic EPH >C16-C21 MC	EH_2D_AL_#1	М	2690	mg/kg	2.00	< 2.0		< 2.0	< 2.0	
Aliphatic EPH >C21-C35 MC	EH_2D_AL_#1	М	2690	mg/kg	3.00	< 3.0		< 3.0	< 3.0	
Aliphatic EPH >C35-C40 MC	EH_2D_AL_#1	Ν	2690	mg/kg	10.00	< 10		< 10	< 10	
Total Aliphatic EPH >C10-C35 MC	EH_2D_AL_#1	М	2690	mg/kg	5.00	< 5.0		< 5.0	< 5.0	
Aromatic VPH >C5-C7	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05		< 0.05	< 0.05	
Aromatic VPH >C7-C8	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05		< 0.05	< 0.05	
Aromatic VPH >C8-C10	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05		< 0.05	< 0.05	
Total Aromatic VPH >C5-C10	HS_2D_AR	U	2780	mg/kg	0.25	< 0.25		< 0.25	< 0.25	
Aromatic EPH >C10-C12 MC	EH_2D_AR_#1	U	2690	mg/kg	1.00	< 1.0		< 1.0	< 1.0	
Aromatic EPH >C12-C16 MC	EH_2D_AR_#1	U	2690	mg/kg	1.00	< 1.0		< 1.0	< 1.0	
Aromatic EPH >C16-C21 MC	EH_2D_AR_#1	U	2690	mg/kg	2.00	3.5		2.4	3.2	
Aromatic EPH >C21-C35 MC	EH_2D_AR_#1	U	2690	mg/kg	2.00	< 2.0		< 2.0	< 2.0	
Aromatic EPH >C35-C40 MC	EH_2D_AR_#1	Ν	2690	mg/kg	1.00	< 1.0		< 1.0	< 1.0	
Total Aromatic EPH >C10-C35 MC	EH_2D_AR_#1	U	2690	mg/kg	5.00	< 5.0		< 5.0	< 5.0	
Total VPH >C5-C10	HS_2D_Total	U	2780	mg/kg	0.50	< 0.50		< 0.50	< 0.50	
Fotal EPH >C10-C35 MC	EH_2D_Total_#1	U	2690	mg/kg	10.00	< 10		< 10	< 10	
Mineral Oil EPH		Ν	2670	mg/kg	10	< 10		< 10	< 10	
Benzene		М	2760	µg/kg	1.0	< 1.0		< 1.0	< 1.0	
Toluene		М	2760	µg/kg	1.0	< 1.0		< 1.0	< 1.0	
Ethylbenzene		М	2760	µg/kg	1.0	< 1.0		< 1.0	< 1.0	
m & p-Xylene		М	2760	µg/kg	1.0	< 1.0		< 1.0	< 1.0	
o-Xylene		М	2760	µg/kg	1.0	< 1.0		< 1.0	< 1.0	
Methyl Tert-Butyl Ether		М	2760	µg/kg	1.0	< 1.0		< 1.0	< 1.0	
Naphthalene		М	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10	
Acenaphthylene		Ν	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10	
Acenaphthene		М	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10	
Fluorene		М	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10	
Phenanthrene		М	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10	
Anthracene		М	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10	
Fluoranthene		М	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10	
Pyrene		М	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10	
Benzo[a]anthracene		М	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10	
Chrysene		М	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10	
Benzo[b]fluoranthene		М	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10	
Benzo[k]fluoranthene		М	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10	
Benzo[a]pyrene		М	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10	

Client: IGSL			Chemtest Job No.:			24-29760	24-29760	24-29760	24-29760 🥖	24-29760	
Quotation No.: Q24-34387		Chemtest Sample ID.:			1867007	1867008	1867009	1867010	1867011		
Order No.:			Clie	nt Samp	le Ref.:	BH6	BH6	BH7	BH7	EH7	
				Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	
				Top De	oth (m):	1.0	2.0	1.0	3.0	3.50	
				Date Sa	ampled:	11-Sep-2024	11-Sep-2024	11-Sep-2024	11-Sep-2024	11-Sep-2024	•
				Asbest	os Lab:	DURHAM		DURHAM	DURHAM		02
Determinand	HWOL Code	Accred.	SOP	Units	LOD						02/11/202
Indeno(1,2,3-c,d)Pyrene		М	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10		7,
Dibenz(a,h)Anthracene		N	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10		2
Benzo[g,h,i]perylene		М	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10		l v
Coronene		N	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10		
PCB 28		U	2815	mg/kg	0.010	< 0.010		< 0.010	< 0.010		
PCB 52		U	2815	mg/kg	0.010	< 0.010		< 0.010	< 0.010		
PCB 101		U	2815	mg/kg	0.010	< 0.010		< 0.010	< 0.010		
PCB 118		U	2815	mg/kg	0.010	< 0.010		< 0.010	< 0.010		
PCB 153		U	2815	mg/kg	0.010	< 0.010		< 0.010	< 0.010		
PCB 138		U		mg/kg				< 0.010	< 0.010		
PCB 180		U		mg/kg				< 0.010	< 0.010		
Tot PCBs Low (7 Congeners)		Ν		mg/kg		< 0.05		< 0.05	< 0.05		
Total Phenols		М		mg/kg		< 0.10		< 0.10	< 0.10		

Project: 25517 Lisheen Tipperary						PA		
Chemtest Job No:	24-29760					Landi	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1867007					<	Limits	
Sample Ref:	BH6						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	1.0					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous 7	Landfill
Sampling Date:	11-Sep-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				2
Total Organic Carbon	2625		М	%	0.31	3	5	6
Loss On Ignition	2610		М	%	1.5			¥0
Total BTEX	2760		М	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	М	mg/kg	< 10	500		
Total Of 17 PAHs Lower	2800		Ν	mg/kg	< 1.0	100		
pH at 20C	2010		М		8.0		>6	
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.0060		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate		s for compliance l	•
				mg/l	mg/kg	using B	S EN 12457 at L/	6 10 l/kg
Arsenic	1455		U	0.0004	0.0039	0.5	2	25
Barium	1455		U	0.007	0.072	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0006	0.0055	0.5	10	70
Copper	1455		U	0.0012	0.012	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0008	0.0083	0.5	10	30
Nickel	1455		U	0.0006	0.0062	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.005	0.050	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.25	2.5	10	150	500
Sulphate	1220		U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020		Ν	44	440	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	3.6	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	15

Project: 25517 Lisheen Tipperary						PA		
Chemtest Job No:	24-29760					Landi	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1867009						Limits	
Sample Ref:	BH7						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	1.0					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous 7	Landfill
Sampling Date:	11-Sep-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				2
Total Organic Carbon	2625		М	%	1.9	3	5	6
Loss On Ignition	2610		М	%	1.4			¥0
Total BTEX	2760		М	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	М	mg/kg	< 10	500		
Total Of 17 PAHs Lower	2800		N	mg/kg	< 1.0	100		
pH at 20C	2010		М		8.4		>6	
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.0060		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	s for compliance I	eaching test
				mg/l	mg/kg	using B	S EN 12457 at L/	6 10 l/kg
Arsenic	1455		U	0.0010	0.010	0.5	2	25
Barium	1455		U	0.079	0.79	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0008	0.0077	0.5	10	70
Copper	1455		U	0.0021	0.021	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0021	0.021	0.5	10	30
Nickel	1455		U	0.0022	0.022	0.4	10	40
Lead	1455		U	0.0019	0.019	0.5	10	50
Antimony	1455		U	0.0013	0.013	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.009	0.089	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.20	2.0	10	150	500
Sulphate	1220		U	5.1	51	1000	20000	50000
Total Dissolved Solids	1020		Ν	91	910	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	4.1	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	11

Project: 25517 Lisheen Tipperary						PA		
Chemtest Job No:	24-29760					Landi	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1867010					<	Limits	
Sample Ref:	BH7						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	3.0					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous 🗡	Landfill
Sampling Date:	11-Sep-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		М	%	3.2	3	5	6
Loss On Ignition	2610		М	%	2.7			¥0
Total BTEX	2760		М	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	М	mg/kg	< 10	500		
Total Of 17 PAHs Lower	2800		N	mg/kg	< 1.0	100		
pH at 20C	2010		М		8.2		>6	
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.0030		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate		s for compliance l	•
				mg/l	mg/kg	using B	S EN 12457 at L/	6 10 l/kg
Arsenic	1455		U	0.0008	0.0079	0.5	2	25
Barium	1455		U	0.054	0.54	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0005	0.0051	0.5	10	70
Copper	1455		U	0.0012	0.012	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0014	0.014	0.5	10	30
Nickel	1455		U	0.0010	0.010	0.4	10	40
Lead	1455		U	0.0005	0.0050	0.5	10	50
Antimony	1455		U	0.0012	0.012	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.005	0.051	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.14	1.4	10	150	500
Sulphate	1220		U	3.2	32	1000	20000	50000
Total Dissolved Solids	1020		Ν	48	480	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	4.3	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	13

Test Methods

SOP	Title	Parameters included	Method summary	Water Accred.
	pH Value of Waters	pH at 20°C	pH Meter	
	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity at 25°C and Total Dissolved Solids (TDS) in Waters	Conductivity Meter	V.
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.	
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).	LED. OL NROLX
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation	
1920	Phenols in Waters by HPLC		Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.	
2010	pH Value of Soils	pH at 20°C	pH Meter	
2015	Acid Neutralisation Capacity	Acid Reserve	Titration	
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <30°C.	
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930	
	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES	
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.	
2180	Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection	
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry	
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.	
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.	
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p- phenylenediamine.	
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.	
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.	
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5- diphenylcarbazide.	
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.	
2625	Total Organic Carbon in Soils		Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.	
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID	

Test Methods

SOP	Title	Parameters included	Method summary	Water Accred.
2690	EPH A/A Split	Aliphatics: >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C40 Aromatics: >C10-C12, >C12-C16, >C16- C21, >C21-C35, >C35-C40	Acetone/Heptane extraction / GCxGC FID detection	L.
	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.	``
2780	VPH A/A Split	Aliphatics: >C5–C6, >C6–C7,>C7–C8,>C8- C10 Aromatics: >C5–C7,>C7-C8,>C8–C10		SD.☆
	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS	
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS. Reported PCB 101 results may contain contributions from PCB 90 due to inseparable chromatography.	
2920	Phenols in Soils by HPLC	Phenol, Methylphenols, Dimethylphenols, 1-Naphthol and TrimethylphenolsNote:	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.	
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge	

Report Information

Key

- U
- Μ
- Ν
- UKAS accredited MCERTS and UKAS accredited Unaccredited This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis S this analysis
- This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis
- This analysis has been subcontracted to an unaccredited laboratory Т
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- "greater than" >
- SOP Standard operating procedure
- LOD Limit of detection

This report shall not be reproduced except in full, and only with the prior approval of the laboratory.

Any comments or interpretations are outside the scope of UKAS accreditation.

The Laboratory is not accredited for any sampling activities and reported results relate to the samples 'as received' at the laboratory.

Uncertainty of measurement for the determinands tested are available upon request .

None of the results in this report have been recovery corrected.

All results are expressed on a dry weight basis.

The following tests were analysed on samples 'as received' and the results subsequently corrected to a dry weight basis EPH, VPH, TPH, BTEX, VOCs, SVOCs, PCBs, Phenols.

For all other tests the samples were dried at \leq 30°C prior to analysis.

All Asbestos testing is performed at the indicated laboratory .

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1.

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt. All water samples will be retained for 14 days from the date of receipt. Charges may apply to extended sample storage.

Water Sample Category Key for Accreditation

DW - Drinking Water GW - Ground Water LE - Land Leachate NA - Not Applicable

Report Information

- PL Prepared Leachate
- PW Processed Water
- **RE Recreational Water**
- SA Saline Water
- SW Surface Water
- **TE Treated Effluent**
- TS Treated Sewage
- UL Unspecified Liquid

Clean Up Codes

- NC No Clean Up
- MC Mathematical Clean Up
- FC Florisil Clean Up

HWOL Acronym System

- HS Headspace analysis
- $\mathsf{E}\mathsf{H}$ $\mathsf{Extractable}$ hydrocarbons i.e. everything extracted by the solvent
- CU Clean-up e.g. by Florisil, silica gel
- 1D GC Single coil gas chromatography
- Total Aliphatics & Aromatics
- AL Aliphatics only
- AR Aromatic only
- 2D GC-GC Double coil gas chromatography
- #1 EH_2D_Total but with humics mathematically subtracted
- #2 EH_2D_Total but with fatty acids mathematically subtracted
- + Operator to indicate cumulative e.g. EH+EH_Total or EH_CU+HS_Total
- If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

UKAS UKAS 2183 Final Report		Profile Email:	Chemtest trofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 info@chemtest.com
Report No.:	24-31051-1		
Initial Date of Issue:	08-Oct-2024		2A
Re-Issue Details:			
Client	IGSL		
Client Address:	M7 Business Park Naas County Kildare Ireland		
Contact(s):	Darren Keogh		
Project	25517 Lisheen Mine		
Quotation No.:	Q23-33421	Date Received:	26-Sep-2024
Order No.:		Date Instructed:	26-Sep-2024
No. of Samples:	9		
Turnaround (Wkdays):	7	Results Due:	04-Oct-2024
Date Approved:	08-Oct-2024		
Approved By:			
JES-A			

Details:

David Smith, Technical Director

For details about application of accreditation to specific matrix types, please refer to the Table at the back of this report

Results - Leachate

Client: IGSL			Che	mtest J	ob No.:	24-31051	24-31051	24-31051	24-31051	24-31051	24-31051	
Quotation No.: Q23-33421		Chemtest Sample ID.:			1872250	1872251	1872253	1872255	1872256	1872257		
Order No.:		Client Sample Ref.:			TP6	TP7	TP8	TP9	TP10	TP11		
		Sample Type:			SOIL	SOIL	SOIL	SOIL	SOIL	SOIL		
				Top De	pth (m):	0.50	0.60	1.00	0.60	0.50	0.50	
				Date Sa	ampled:	20-Sep-2024	20-Sep-2024	20-Sep-2024	20-Sep-2024	20-Sep-2024	20-Sep-2024	
Determinand	Accred.	SOP	Туре	Units	LOD							· 02
Ammonium	U	1220	10:1	mg/l	0.050	0.11	< 0.050	< 0.050	0.053	< 0.050	0.056	~,
Ammonium	N	1220	10:1	mg/kg	0.10	1.3	0.53	0.33	0.67	0.45	0.77	1
												TO

<u> Results - Soil</u>

					- - -	04.04054	04.04054	04.04054	04.04054		04.04054	04.04054
Client: IGSL				mtest J		24-31051	24-31051	24-31051	24-31051	24-31051	24-31051	24-31051
Quotation No.: Q23-33421		(st Sam	-	1872250	1872251	1872252	1872253	1872254	1872255	1872256
Order No.:			Cliei	nt Samp		TP6	TP7	TP7	TP8	TP8	TP9	TP10
				-	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De		0.50	0.60	1.40	1.00	2.00	0.60	0.50
					-	20-Sep-2024	20-Sep-2024	20-Sep-2024	20-Sep-2024	20-Sep-2024	• 20-Sep-2024	20-Sep-2024
				Asbest		DURHAM	DURHAM		DURHAM			DURHAM
Determinand	HWOL Code	Accred.	SOP	Units							7	
АСМ Туре		U	2192		N/A	-	-		-		1	-
Asbestos Identification		U	2192		N/A	No Asbestos	No Asbestos		No Asbestos		No Asbestos	No Asbestos
		_				Detected	Detected		Detected		Detected	Detected
Moisture		N	2030	%	0.020	7.3	7.1	7.4	7.4	7.8	8.6	× 10
Soil Colour		N	2040		N/A	Brown	Brown	Brown	Brown	Brown	Brown	Brown
Other Material		N	2040		N/A	Stones	Stones and Roots	Stones	Stones	Stones	Stones	Stones and Roots
Soil Texture		N	2040		N/A	Loam	Loam	Loam	Loam	Loam	Loam	Clay
pH (2.5:1) at 20C		N	2040		4.0	Luain	Luain	8.7	LUaill	8.6	LUaill	Ciay
Boron (Hot Water Soluble)		M	2010	mg/kg	0.40	< 0.40	< 0.40	0.7	< 0.40	0.0	< 0.40	< 0.40
Magnesium (Water Soluble)	_	N	2120	g/l	0.40	< 0.40	< 0.40	< 0.010	< 0.40	< 0.010	< 0.40	< 0.40
		M		, v								
Sulphate (2:1 Water Soluble) as SO4		U	2120 2175	g/l %	0.010	1		< 0.010		< 0.010 0.010		
Total Sulphur		-	-			.1.0	.1.0	0.010	.1.0	0.010	.1.0	.1.0
Sulphur (Elemental)		M	2180	mg/kg	1.0	< 1.0	< 1.0	0.010	< 1.0	0.040	< 1.0	< 1.0
Chloride (Water Soluble)		M	2220	g/l	0.010			< 0.010		< 0.010		
Nitrate (Water Soluble)		N	2220	g/l	0.010	0.50	0.50	< 0.010	0.50	< 0.010	0.50	0.50
Cyanide (Total)		M	2300	mg/kg		< 0.50	< 0.50		< 0.50		< 0.50	< 0.50
Sulphide (Easily Liberatable)		N	2325	mg/kg		4.0	4.7		7.3		< 0.50	4.9
Ammonium (Water Soluble)		M	2220	g/l	0.01			< 0.01		< 0.01		
Sulphate (Total)		U	2430	%	0.010	< 0.010	0.016		< 0.010		< 0.010	0.084
Sulphate (Acid Soluble)		U	2430	%	0.010			< 0.010		< 0.010		
Arsenic		М	2455	mg/kg	0.5	8.9	3.8		4.7		3.1	17
Barium		М	2455	mg/kg	0.5	28	25		45		54	93
Cadmium		М	2455	mg/kg	0.10	0.42	0.28		0.23		< 0.10	0.88
Chromium		М	2455	mg/kg	0.5	7.7	5.0		6.9		5.7	9.1
Molybdenum		М	2455	mg/kg	0.5	< 0.5	< 0.5		< 0.5		< 0.5	0.6
Antimony		N	2455	mg/kg	2.0	< 2.0	< 2.0		< 2.0		< 2.0	< 2.0
Copper		М	2455	mg/kg		8.7	4.7		6.5		6.2	13
Mercury		М	2455	mg/kg		< 0.05	< 0.05		< 0.05		< 0.05	0.05
Nickel		М	2455	mg/kg		16	13		14		14	36
Lead		М	2455	mg/kg	0.50	12	8.4		10		8.9	71
Selenium		М	2455	mg/kg	0.25	0.52	0.38		0.36		0.43	0.80
Zinc		М	2455	mg/kg	0.50	40	96		29		32	220
Chromium (Trivalent)		N	2490	mg/kg	1.0	7.7	5.0		6.9		5.7	9.1
Chromium (Hexavalent)		N	2490	mg/kg		< 0.50	< 0.50		< 0.50		< 0.50	< 0.50
Aliphatic VPH >C5-C6	HS_2D_AL	U	2780	mg/kg		< 0.05	< 0.05		< 0.05		< 0.05	< 0.05
Aliphatic VPH >C6-C7	HS_2D_AL	U	2780	mg/kg		< 0.05	< 0.05		< 0.05		< 0.05	< 0.05
Aliphatic VPH >C7-C8	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05		< 0.05		< 0.05	< 0.05
Aliphatic VPH >C8-C10	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05		< 0.05		< 0.05	< 0.05

<u> Results - Soil</u>

Client: IGSL			Che	mtest Jo	b No.:	24-31051	24-31051	24-31051	24-31051 🥖	24-31051	24-31051	24-31051
Quotation No.: Q23-33421				est Sam		1872250	1872251	1872252	1872253	1872254	1872255	1872256
Order No.:				nt Samp		TP6	TP7	TP7	TP8	798	TP9	TP10
			Olic	Sample		SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top Dep		0.50	0.60	1.40	1.00	2.00	0.60	0.50
				Date Sa	()	20-Sep-2024	20-Sep-2024	20-Sep-2024	20-Sep-2024		• 20-Sep-2024	20-Sep-2024
				Asbest		DURHAM	DURHAM	20 000 2024	DURHAM	20 000 202+	ODURHAM	DURHAM
Determinand	HWOL Code	Accred.	SOP	Units		Dortriviti	Bortriviti		Bortinatio			Bortination
Total Aliphatic VPH >C5-C10	HS 2D AL	U	2780	mg/kg	0.25	< 0.25	< 0.25		< 0.25		< 0.25	< 0.25
Aliphatic EPH >C10-C12 MC	EH 2D AL #1	M	2690	mg/kg	2.00	< 2.0	< 2.0		< 2.0		< 2.0	< 2.0
Aliphatic EPH >C12-C16 MC	EH_2D_AL_#1	M	2690	mg/kg	1.00	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Aliphatic EPH >C16-C21 MC	EH 2D AL #1	M	2690	mg/kg	2.00	< 2.0	< 2.0		< 2.0		< 2.0	< 2.0
Aliphatic EPH >C21-C35 MC	EH 2D AL #1	M	2690	mg/kg	3.00	< 3.0	< 3.0		< 3.0		< 3.0	< 3.0
Aliphatic EPH >C35-C40 MC	EH 2D AL #1	N	2690	mg/kg	10.00	< 10	< 10		< 10		< 10	< 10
Total Aliphatic EPH >C10-C35 MC	EH 2D AL #1	M	2690	mg/kg	5.00	< 5.0	< 5.0		< 5.0		< 5.0	< 5.0
Aromatic VPH >C5-C7	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05	< 0.05		< 0.05		< 0.05	< 0.05
Aromatic VPH >C7-C8	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05	< 0.05		< 0.05		< 0.05	< 0.05
Aromatic VPH >C8-C10	HS 2D AR	U	2780	mg/kg	0.05	< 0.05	< 0.05		< 0.05		< 0.05	< 0.05
Total Aromatic VPH >C5-C10	HS_2D_AR	U	2780	mg/kg	0.25	< 0.25	< 0.25		< 0.25		< 0.25	< 0.25
Aromatic EPH >C10-C12 MC	EH_2D_AR_#1	U	2690	mg/kg	1.00	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Aromatic EPH >C12-C16 MC	 EH_2D_AR_#1	U	2690	mg/kg	1.00	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Aromatic EPH >C16-C21 MC	 EH_2D_AR_#1	U	2690	mg/kg	2.00	4.4	7.1		7.3		6.2	6.8
Aromatic EPH >C21-C35 MC	EH 2D AR #1	U	2690	mg/kg	2.00	< 2.0	< 2.0		< 2.0		< 2.0	< 2.0
Aromatic EPH >C35-C40 MC	EH_2D_AR_#1	N	2690	mg/kg	1.00	< 1.0	17		< 1.0		< 1.0	< 1.0
Total Aromatic EPH >C10-C35 MC	 EH_2D_AR_#1	U	2690	mg/kg	5.00	< 5.0	7.2		7.4		6.3	7.4
Total VPH >C5-C10	HS_2D_Total	U	2780	mg/kg	0.50	< 0.50	< 0.50		< 0.50		< 0.50	< 0.50
Total EPH >C10-C35 MC	EH_2D_Total_#1	U	2690	mg/kg	10.00	< 10	< 10		< 10		< 10	< 10
Mineral Oil EPH		N	2670	mg/kg	10	< 10	< 10		< 10		< 10	< 10
Benzene		М	2760	µg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Toluene		М	2760	µg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Ethylbenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
m & p-Xylene		М	2760	µg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
o-Xylene		М	2760	µg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Methyl Tert-Butyl Ether		М	2760	µg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Naphthalene		М	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10		< 0.10	< 0.10
Acenaphthylene		N	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10		< 0.10	< 0.10
Acenaphthene		М	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10		< 0.10	< 0.10
Fluorene		М	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10		< 0.10	< 0.10
Phenanthrene		М	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10		< 0.10	< 0.10
Anthracene		М	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10		< 0.10	< 0.10
Fluoranthene		М	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10		< 0.10	< 0.10
Pyrene		М	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10		< 0.10	< 0.10
Benzo[a]anthracene		М	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10		< 0.10	< 0.10
Chrysene		М	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10		< 0.10	< 0.10
Benzo[b]fluoranthene		М	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10		< 0.10	< 0.10
Benzo[k]fluoranthene		М	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10		< 0.10	< 0.10
Benzo[a]pyrene		М	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10		< 0.10	< 0.10

<u> Results - Soil</u>

Client: IGSL			Chei	mtest Jo	ob No.:	24-31051	24-31051	24-31051	24-31051 🥖	24-31051	24-31051	24-31051
Quotation No.: Q23-33421		(Chemte	est Sam	ple ID.:	1872250	1872251	1872252	1872253	1872254	1872255	1872256
Order No.:			Clier	nt Samp	le Ref.:	TP6	TP7	TP7	TP8	TP8	TP9	TP10
				Sample	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Тор Dep	()	0.50	0.60	1.40	1.00	2.00	0.60	0.50
				Date Sa	ampled:	20-Sep-2024	20-Sep-2024	20-Sep-2024	20-Sep-2024	20-Sep-2024	• 20-Sep-2024	20-Sep-2024
				Asbest	os Lab:	DURHAM	DURHAM		DURHAM		ODURHAM	DURHAM
Determinand	HWOL Code	Accred.	SOP	Units	LOD						7	
Indeno(1,2,3-c,d)Pyrene		М	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10		< 0.10	< 0.10
Dibenz(a,h)Anthracene		Ν	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10		< 0.10	< 0.10
Benzo[g,h,i]perylene		М	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10		< 0.10	< 0.10
Coronene		N	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10		< 0.10	< 0.10
PCB 28		U	2815	mg/kg	0.010	< 0.010	< 0.010		< 0.010		< 0.010	< 0.010
PCB 52		U	2815	mg/kg	0.010	< 0.010	< 0.010		< 0.010		< 0.010	< 0.010
PCB 101		U	2815	mg/kg	0.010	< 0.010	< 0.010		< 0.010		< 0.010	< 0.010
PCB 118		U	2815	mg/kg	0.010	< 0.010	< 0.010		< 0.010		< 0.010	< 0.010
PCB 153		U	2815	mg/kg	0.010	< 0.010	< 0.010		< 0.010		< 0.010	< 0.010
PCB 138		U	2815	mg/kg	0.010	< 0.010	< 0.010		< 0.010		< 0.010	< 0.010
PCB 180		U	2815	mg/kg	0.010	< 0.010	< 0.010		< 0.010		< 0.010	< 0.010
Tot PCBs Low (7 Congeners)		Ν	2815	mg/kg	0.05	< 0.05	< 0.05		< 0.05		< 0.05	< 0.05
Total Phenols		М	2920	mg/kg	0.10	< 0.10	< 0.10		< 0.10		< 0.10	< 0.10

<u>Results - Soil</u>

Client: IGSL				ntest Jo		24-31051	24-31051
Quotation No.: Q23-33421		(Chemte	1872257	1872258		
Order No.:			Clier	nt Samp		TP11	TP11
					e Type:	SOIL	SOIL
				Тор Dep	oth (m):	0.50	1.10
				Date Sa	ampled:	20-Sep-2024	20-Sep-2024
				Asbest	os Lab:	DURHAM	
Determinand	HWOL Code	Accred.	SOP	Units	LOD		
АСМ Туре		U	2192		N/A	-	
Asbestos Identification		U	2192		N/A	No Asbestos Detected	
Moisture		N	2030	%	0.020	6.7	7.3
Soil Colour		N	2040		N/A	Brown	Brown
Other Material		Ν	2040		N/A	Stones	Stones
Soil Texture		Ν	2040		N/A	Loam	Loam
pH (2.5:1) at 20C		Ν	2010		4.0		8.7
Boron (Hot Water Soluble)		М	2120	mg/kg	0.40	< 0.40	
Magnesium (Water Soluble)		Ν	2120	g/l	0.010		< 0.010
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010		< 0.010
Total Sulphur		U	2175	%	0.010		0.010
Sulphur (Elemental)		М	2180	mg/kg	1.0	< 1.0	
Chloride (Water Soluble)		М	2220	g/l	0.010		0.33
Nitrate (Water Soluble)		N	2220	g/l	0.010		< 0.010
Cyanide (Total)		М	2300	mg/kg	0.50	< 0.50	
Sulphide (Easily Liberatable)		N	2325	mg/kg	0.50	3.8	
Ammonium (Water Soluble)		М	2220	g/l	0.01		< 0.01
Sulphate (Total)		U	2430	%	0.010	< 0.010	
Sulphate (Acid Soluble)		U	2430	%	0.010		< 0.010
Arsenic		М	2455	mg/kg	0.5	2.3	
Barium		М	2455	mg/kg	0.5	21	
Cadmium		М	2455	mg/kg	0.10	< 0.10	
Chromium		М	2455	mg/kg	0.5	3.6	
Molybdenum		М	2455	mg/kg	0.5	< 0.5	
Antimony		N	2455	mg/kg	2.0	< 2.0	
Copper		М	2455	mg/kg	0.50	2.8	
Mercury		М	2455	mg/kg	0.05	0.33	
Nickel		М	2455	mg/kg	0.50	6.9	
Lead		М	2455	mg/kg	0.50	5.6	
Selenium		М	2455	mg/kg	0.25	< 0.25	
Zinc		М	2455	mg/kg	0.50	14	
Chromium (Trivalent)		Ν	2490	mg/kg	1.0	3.6	
Chromium (Hexavalent)		Ν	2490	mg/kg	0.50	< 0.50	
Aliphatic VPH >C5-C6	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	
Aliphatic VPH >C6-C7	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	
Aliphatic VPH >C7-C8	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	
Aliphatic VPH >C8-C10	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	

RECEIVED. OP 77 1202

<u>Results - Soil</u>

Client: IGSL				mtest Jo		24-31051	24-31051
Quotation No.: Q23-33421		(est Sam		1872257	1872258
Order No.:		Client Sample Ref.:		TP11	TP11		
				Sampl	e Type:	SOIL	SOIL
				Тор Dep	oth (m):	0.50	1.10
				Date Sa	ampled:	20-Sep-2024	20-Sep-2024
				Asbest	os Lab:	DURHAM	
Determinand	HWOL Code	Accred.	SOP	Units	LOD		
Total Aliphatic VPH >C5-C10	HS_2D_AL	U	2780	mg/kg	0.25	< 0.25	
Aliphatic EPH >C10-C12 MC	EH_2D_AL_#1	М	2690	mg/kg	2.00	< 2.0	
Aliphatic EPH >C12-C16 MC	EH_2D_AL_#1	М	2690	mg/kg	1.00	< 1.0	
Aliphatic EPH >C16-C21 MC	EH_2D_AL_#1	М	2690	mg/kg	2.00	2.4	
Aliphatic EPH >C21-C35 MC	EH_2D_AL_#1	М	2690	mg/kg	3.00	3.8	
Aliphatic EPH >C35-C40 MC	EH_2D_AL_#1	N	2690	mg/kg	10.00	< 10	
Total Aliphatic EPH >C10-C35 MC	EH_2D_AL_#1	М	2690	mg/kg	5.00	6.2	
Aromatic VPH >C5-C7	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05	1
Aromatic VPH >C7-C8	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05	
Aromatic VPH >C8-C10	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05	
Total Aromatic VPH >C5-C10	HS 2D AR	U	2780	mg/kg	0.25	< 0.25	
Aromatic EPH >C10-C12 MC	 EH_2D_AR_#1	U	2690	mg/kg	1.00	< 1.0	
Aromatic EPH >C12-C16 MC	EH_2D_AR_#1	U	2690	mg/kg	1.00	< 1.0	
Aromatic EPH >C16-C21 MC	EH_2D_AR_#1	U	2690	mg/kg	2.00	6.8	
Aromatic EPH >C21-C35 MC	EH_2D_AR_#1	U	2690	mg/kg	2.00	< 2.0	
Aromatic EPH >C35-C40 MC	EH_2D_AR_#1	N	2690		1.00	< 1.0	
Total Aromatic EPH >C10-C35 MC	EH_2D_AR_#1	U	2690	mg/kg	5.00	7.4	
Total VPH >C5-C10	HS_2D_Total	Ŭ	2780	mg/kg	0.50	< 0.50	
Total EPH >C10-C35 MC	EH 2D Total #1	U	2690	mg/kg	10.00	14	
Mineral Oil EPH		N	2670		10	< 10	
Benzene		M	2760	µg/kg	1.0	< 1.0	
Toluene		M	2760	µg/kg	1.0	< 1.0	
Ethylbenzene		M	2760	µg/kg	1.0	< 1.0	
m & p-Xylene		M	2760	µg/kg	1.0	< 1.0	
o-Xylene		M	2760		1.0	< 1.0	
Methyl Tert-Butyl Ether		M	2760	µg/kg	1.0	< 1.0	
Naphthalene		M	2800	mg/kg	0.10	< 0.10	
Acenaphthylene		N	2800		0.10	< 0.10	
Acenaphthene		M	2800	mg/kg	0.10	< 0.10	
Fluorene		M	2800		0.10	< 0.10	
Phenanthrene		M	2800	mg/kg	0.10	< 0.10	
Anthracene		M	2800	mg/kg	0.10	< 0.10	
Fluoranthene		M	2800		0.10	< 0.10	
Pyrene		M	2800		0.10	< 0.10	
Benzo[a]anthracene		M	2800	mg/kg	0.10	< 0.10	
Chrysene		M	2800	mg/kg	0.10	< 0.10	
Benzo[b]fluoranthene		M	2800	mg/kg	0.10	< 0.10	
Benzo[k]fluoranthene		M	2800	mg/kg	0.10	< 0.10	
Benzo[a]pyrene		M	2800			< 0.10	

RECEIVED. OPI77, 2008

<u>Results - Soil</u>

Client: IGSL			Che	mtest J	ob No.:	24-31051	24-31051
Quotation No.: Q23-33421		(Chemte	st Sam	ple ID.:	1872257	1872258
Order No.:			Clie	nt Samp	le Ref.:	TP11	TP11
				Sampl	e Type:	SOIL	SOIL
				Top De		0.50	1.10
				Date Sa	ampled:	20-Sep-2024	20-Sep-2024
				Asbest	os Lab:	DURHAM	
Determinand	HWOL Code	Accred.	SOP	Units	LOD		
Indeno(1,2,3-c,d)Pyrene		М	2800	mg/kg	0.10	< 0.10	
Dibenz(a,h)Anthracene		N	2800	mg/kg	0.10	< 0.10	
Benzo[g,h,i]perylene		М	2800	mg/kg	0.10	< 0.10	
Coronene		N	2800	mg/kg	0.10	< 0.10	
PCB 28		U	2815	mg/kg	0.010	< 0.010	
PCB 52		U	2815	mg/kg	0.010	< 0.010	
PCB 101		U	2815	mg/kg	0.010	< 0.010	
PCB 118		U	2815	mg/kg	0.010	< 0.010	
PCB 153		U	2815	mg/kg	0.010	< 0.010	
PCB 138		U	2815	mg/kg	0.010	< 0.010	
PCB 180		U	2815	mg/kg	0.010	< 0.010	
Tot PCBs Low (7 Congeners)		Ν	2815	mg/kg	0.05	< 0.05	
Total Phenols		М	2920	mg/kg	0.10	< 0.10	

RECEIVED. OPINIOR

Project: 25517 Lisheen Mine						PA		
Chemtest Job No:	24-31051					Landi	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1872250						Limits	
Sample Ref: Sample ID:	TP6						Stable, Non- reactive	
Sample Location: Top Depth(m):	0.50					Inert Waste	hazardous waste in non-	Hazardous Waste
Bottom Depth(m):						Landfill	hazardous 7	Landfill
Sampling Date:	20-Sep-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				5
Total Organic Carbon	2625		М	%	2.1	3	5	6
Loss On Ignition	2610		М	%	1.3			¥0
Total BTEX	2760		М	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	М	mg/kg	< 10	500		
Total Of 17 PAHs Lower	2800		Ν	mg/kg	< 1.0	100		
pH at 20C	2010		М		8.5		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.074		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance l	eaching test
				mg/l	mg/kg	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455		U	0.0004	0.0039	0.5	2	25
Barium	1455		U	< 0.005	< 0.050	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.16	1.6	0.5	10	70
Copper	1455		U	0.0015	0.015	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0022	0.022	0.5	10	30
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.004	0.043	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.22	2.2	10	150	500
Sulphate	1220		U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020		Ν	40	400	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	3.1	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	7.3

Project: 25517 Lisheen Mine						PA		
Chemtest Job No:	24-31051					Landi	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1872251					<	Limits	
Sample Ref: Sample ID:	TP7						Stable, Non- reactive	
Sample ID. Sample Location: Top Depth(m):	0.60					Inert Waste	hazardous waste in non-	Hazardous Waste
Bottom Depth(m):						Landfill	hazardous 7	Landfill
Sampling Date:	20-Sep-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		М	%	1.4	3	5	6
Loss On Ignition	2610		М	%	1.0			10
Total BTEX	2760		М	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	М	mg/kg	< 10	500		
Total Of 17 PAHs Lower	2800		Ν	mg/kg	< 1.0	100		
pH at 20C	2010		М		8.6		>6	
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.10		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
				mg/l	mg/kg	using B	S EN 12457 at L/S	S 10 I/kg
Arsenic	1455		U	0.0002	0.0021	0.5	2	25
Barium	1455		U	< 0.005	< 0.050	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0015	0.015	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0007	0.0065	0.5	10	30
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.005	0.049	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.20	2.0	10	150	500
Sulphate	1220		U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020		Ν	40	400	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	2.7	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	7.1

Project: 25517 Lisheen Mine						PA		
Chemtest Job No:	24-31051					Landi	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1872253						Limits	
Sample Ref: Sample ID:	TP8						Stable, Non-	
Sample Location: Top Depth(m):	1.00					Inert Waste	hazardous waste in non-	Hazardous Waste
Bottom Depth(m):						Landfill	hazardous 7	Landfill
Sampling Date:	20-Sep-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units	1			
Total Organic Carbon	2625		М	%	0.44	3	5	6
Loss On Ignition	2610		М	%	1.4			10
Total BTEX	2760		М	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	М	mg/kg	< 10	500		
Total Of 17 PAHs Lower	2800		Ν	mg/kg	< 1.0	100		
pH at 20C	2010		М		8.5		>6	
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.11		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	s for compliance I	eaching test
				mg/l	mg/kg	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455		U	< 0.0002	< 0.0020	0.5	2	25
Barium	1455		U	0.006	0.061	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0016	0.016	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0010	0.010	0.5	10	30
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.003	0.035	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.28	2.8	10	150	500
Sulphate	1220		U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020		Ν	36	360	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	< 2.5	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	7.4

Project: 25517 Lisheen Mine						PA		
Chemtest Job No:	24-31051					Landi	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1872255						Limits	
Sample Ref: Sample ID:	TP9						Stable, Non- reactive	
Sample Location: Top Depth(m):	0.60					Inert Waste	hazardous waste in non-	Hazardous Waste
Bottom Depth(m):						Landfill	hazardous 7	Landfill
Sampling Date:	20-Sep-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		М	%	0.88	3	5	6
Loss On Ignition	2610		М	%	1.3			10
Total BTEX	2760		М	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	М	mg/kg	< 10	500		
Total Of 17 PAHs Lower	2800		Ν	mg/kg	< 1.0	100		
pH at 20C	2010		М		8.4		>6	
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.12		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	s for compliance I	eaching test
-				mg/l	mg/kg	using BS EN 12457 at L/S 10 l/kg		
Arsenic	1455		U	< 0.0002	< 0.0020	0.5	2	25
Barium	1455		U	< 0.005	< 0.050	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0015	0.015	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0017	0.017	0.5	10	30
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.004	0.043	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.18	1.8	10	150	500
Sulphate	1220		U	2.5	25	1000	20000	50000
Total Dissolved Solids	1020		Ν	5.6	56	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	< 2.5	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	8.6

Project: 25517 Lisheen Mine						PA		
Chemtest Job No:	24-31051					Land	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1872256						Limits	
Sample Ref: Sample ID:	TP10						Stable, Non- reactive	
Sample Location: Top Depth(m):	0.50					Inert Waste	hazardous waste in non-	Hazardous Waste
Bottom Depth(m):						Landfill	hazardous 7	Landfill
Sampling Date:	20-Sep-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				2
Total Organic Carbon	2625		М	%	0.83	3	5	6
Loss On Ignition	2610		М	%	4.4			10
Total BTEX	2760		М	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	М	mg/kg	< 10	500		
Total Of 17 PAHs Lower	2800		Ν	mg/kg	< 1.0	100		
pH at 20C	2010		М		8.3		>6	
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.087		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	s for compliance l	eaching test
				mg/l	mg/kg	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455		U	0.0022	0.022	0.5	2	25
Barium	1455		U	0.013	0.13	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0008	0.0075	0.5	10	70
Copper	1455		U	0.0028	0.028	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0018	0.018	0.5	10	30
Nickel	1455		U	0.0031	0.032	0.4	10	40
Lead	1455		U	0.0037	0.037	0.5	10	50
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.027	0.28	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.36	3.6	10	150	500
Sulphate	1220		U	2.6	26	1000	20000	50000
Total Dissolved Solids	1020		Ν	52	520	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	3.3	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	10

Project: 25517 Lisheen Mine						PA		
Chemtest Job No:	24-31051					Landi	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1872257						Limits	
Sample Ref: Sample ID:	TP11						Stable, Non- reactive	
Sample Location: Top Depth(m):	0.50					Inert Waste	hazardous waste in non-	Hazardous Waste
Bottom Depth(m):						Landfill	hazardous 7	Landfill
Sampling Date:	20-Sep-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units	1			2
Total Organic Carbon	2625		М	%	0.54	3	5	6
Loss On Ignition	2610		М	%	0.92			10
Total BTEX	2760		М	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	М	mg/kg	< 10	500		
Total Of 17 PAHs Lower	2800		Ν	mg/kg	< 1.0	100		
pH at 20C	2010		М		8.3		>6	
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.097		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	s for compliance I	eaching test
-				mg/l	mg/kg	using B	S EN 12457 at L/	6 10 l/kg
Arsenic	1455		U	0.0004	0.0038	0.5	2	25
Barium	1455		U	0.008	0.077	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0005	0.0053	0.5	10	70
Copper	1455		U	0.0016	0.017	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0007	0.0068	0.5	10	30
Nickel	1455		U	0.0007	0.0068	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.005	0.045	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.25	2.5	10	150	500
Sulphate	1220		U	1.6	16	1000	20000	50000
Total Dissolved Solids	1020		Ν	41	410	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	3.6	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	6.7

Test Methods

SOP	Title	Parameters included	Method summary	Water Accred.
	pH Value of Waters	pH at 20°C	pH Meter	
	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity at 25°C and Total Dissolved Solids (TDS) in Waters	Conductivity Meter	V.
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.	
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).	LED. OL NROLX
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation	
1920	Phenols in Waters by HPLC		Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.	
2010	pH Value of Soils	pH at 20°C	pH Meter	
2015	Acid Neutralisation Capacity	Acid Reserve	Titration	
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <30°C.	
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930	
	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES	
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.	
2180	Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection	
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry	
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.	
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.	
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p- phenylenediamine.	
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.	
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.	
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5- diphenylcarbazide.	
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.	
2625	Total Organic Carbon in Soils		Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.	
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID	

Test Methods

SOP	Title	Parameters included	Method summary	Water Accred.
2690	EPH A/A Split	Aliphatics: >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C40 Aromatics: >C10–C12, >C12–C16, >C16– C21, >C21–C35, >C35–C40	Acetone/Heptane extraction / GCxGC FIO detection	U.S.
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.	0.02/1/200×
2780	VPH A/A Split	Aliphatics: >C5–C6, >C6–C7,>C7–C8,>C8- C10 Aromatics: >C5–C7,>C7-C8,>C8–C10	•	JA V
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS	
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS. Reported PCB 101 results may contain contributions from PCB 90 due to inseparable chromatography.	
2920	Phenols in Soils by HPLC		60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.	
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge	

Report Information

Key

- U
- Μ
- Ν
- UKAS accredited MCERTS and UKAS accredited Unaccredited This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis S this analysis
- This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis
- Т This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- "greater than" >
- SOP Standard operating procedure
- LOD Limit of detection

This report shall not be reproduced except in full, and only with the prior approval of the laboratory.

Any comments or interpretations are outside the scope of UKAS accreditation.

The Laboratory is not accredited for any sampling activities and reported results relate to the samples 'as received' at the laboratory.

Uncertainty of measurement for the determinands tested are available upon request .

None of the results in this report have been recovery corrected.

All results are expressed on a dry weight basis.

The following tests were analysed on samples 'as received' and the results subsequently corrected to a dry weight basis EPH, VPH, TPH, BTEX, VOCs, SVOCs, PCBs, Phenols.

For all other tests the samples were dried at \leq 30°C prior to analysis.

All Asbestos testing is performed at the indicated laboratory .

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1.

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt. All water samples will be retained for 14 days from the date of receipt. Charges may apply to extended sample storage.

Water Sample Category Key for Accreditation

DW - Drinking Water GW - Ground Water LE - Land Leachate NA - Not Applicable

Report Information

- PL Prepared Leachate
- PW Processed Water
- **RE Recreational Water**
- SA Saline Water
- SW Surface Water
- **TE Treated Effluent**
- TS Treated Sewage
- UL Unspecified Liquid

Clean Up Codes

- NC No Clean Up
- MC Mathematical Clean Up
- FC Florisil Clean Up

HWOL Acronym System

- HS Headspace analysis
- $\mathsf{E}\mathsf{H}$ $\mathsf{Extractable}$ hydrocarbons i.e. everything extracted by the solvent
- CU Clean-up e.g. by Florisil, silica gel
- 1D GC Single coil gas chromatography
- Total Aliphatics & Aromatics
- AL Aliphatics only
- AR Aromatic only
- 2D GC-GC Double coil gas chromatography
- #1 EH_2D_Total but with humics mathematically subtracted
- #2 EH_2D_Total but with fatty acids mathematically subtracted
- + Operator to indicate cumulative e.g. EH+EH_Total or EH_CU+HS_Total
- If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Appendix 11

Waste Classification Report

Unit 15 Melbourne Business Park Model Farm Road Cork T12 WR89

T: 021 434 5366 E:admin@ocallaghanmoran.com www.ocallaghanmoran.com

Waste Characterisation Assessment

Lisheen Mine

Co. Tipperary

Prepared For: -

IGSL Limited Unit F M7 Business Park Naas County Kildare

Prepared By: -

O'Callaghan Moran & Associates Unit 15 Melbourne Business Park Model Farm Road Cork

October 2024

				PECEIVED. O2-12 FOD
Project	Waste Charact	terisation: Lisheer	n Mine, Co. Tipperary	NOV.
Client	IGSL Limited			
Report No	Date	Status	Prepared By	Reviewed By
240016001	23/10/2024	Final	Austin Hynes PGeo MSc	Sean Moran B.Sc. MSc

TABLE OF CONTENTS

T/	ABLE	OF CONTENTS	RECEILA
1	IN	TRODUCTION	<u>PAGE</u>
			×.
	1.1	Methodology	1
2	W	ASTE CLASSIFICATION ASSESSMENT	
	2.1	Soil Sampling and Laboratory Analysis	2
	2.2	WASTE CLASSIFICATION	5
	2.3	WASTE ACCEPTANCE CRITERIA	6
	2.4	WASTE MANAGEMENT OPTIONS	9
3	СС	ONCLUSIONS AND RECOMMENDATIONS	11
	3.1	Conclusions	
	3.2	RECOMMENDATIONS	

APPENDICES

APPENDIX 1	-	Trial Pit and Borehole Logs
APPENDIX 2	-	Laboratory Results
APPENDIX 3	-	Waste Classification Report

1 INTRODUCTION

IGSL Limited requested O'Callaghan Moran & Associates (OCM) to undertake a waster characterisation assessment of eighteen (18 No.) samples of made and natural ground collected from eleven (11 No.) trial pits and six (6 No.) cable percussion boreholes from a site at Lisheen Mine, Co. Tipperary.

1.1 Methodology

IGSL provided a description of the ground conditions and collected samples of the soils from the borehole and trial pit locations. The samples were analysed at an accredited laboratory and the results formed the basis for a waste classification assessment, which was undertaken by OCM in accordance with the Environmental Protection Agency (EPA) Guidelines on the Classification of Waste (2015).

CENED. OZY

2 WASTE CLASSIFICATION ASSESSMENT

2.1 Soil Sampling and Laboratory Analysis

2.1.1 Site Investigation

RECEILED. 02/77/2024 The site investigation was undertaken in July and August 2024 and included the collection of eighteen (18 No.) samples of made and natural ground collected from eleven (11 No.) trial pits and six (6 No.) cable percussion boreholes. The location of the samples is shown on Figure 2.1 and 2.2. The logs are in Appendix 1.

There is topsoil at the surface of BH01-BH07, TP01, TP03, TP04 and TP07. There is Made Ground at the surface of TP02, TP05, TP06, TP08, TP10 and TP11. The Made Ground is composed of sandy gravelly CLAY/clayey sandy GRAVEL. The Made Ground ranges in thickness from 0.30-1.10 mbgl.

The Natural Ground is generally comprises firm to stiff sandy gravelly CLAY with cobble and boulder content to 2.00-3.50 mbgl which becomes very stiff below 2.50 mbgl. Some lenses of dense sandy GRAVEL/gravelly SAND were encountered across the site.

At BH07, dense sandy GRAVEL was encountered from 3.90-5.10 mbgl.

2.1.2 Sample Collection

IGSL collected the samples and placed them in laboratory prepared containers that were stored in coolers prior to shipment to Chemtest Ltd.

2.1.3 Laboratory Analysis

The samples were tested for, metals (arsenic, barium, cadmium, chromium, copper, mercury, molybdenum, nickel, lead, antimony, selenium and zinc, total organic carbon (TOC), BTEX (benzene, toluene, ethylbenzene and xylene) aliphatic and aromatic hydrocarbons, polychlorinated biphenyls (PCB), mineral oil, polyaromatic hydrocarbons (PAH) and asbestos. Leachate generated from the samples was tested for arsenic, barium, cadmium, chromium, copper, mercury, molybdenum, nickel, lead, antimony, selenium and zinc, chloride, fluoride, soluble sulphate, phenols, dissolved organic carbon (DOC), total dissolved solids (TDS).

This parameter range facilitates an assessment of the hazardous properties of the waste, and also allows a determination of appropriate off-site management options based on the Waste Acceptance Criteria (WAC) applied by landfill operators.

The analytical methods were all ISO/CEN approved and the method detection limits were below the relevant guidance/threshold values. The full laboratory report is in Appendix 2.

	I LINE I LINE	E 621337.374 E 62	
O'Callaghan Moran & Associates	O'Callaghan Moran & Associates, Unit 15 Melbourne Business Park, Model Farm Road, Cork. Tel. (021) 4345366 Email: info@ocallaghanmoran.com	Title: Figure 2.1 Sample Location Plan	<u>Legend</u>
This drawing is the property of reproduced or disclosed to an Moran & Associates and shall b	O'Callaghan Moran & Associates and shall not be used, rone without the prior written permission of O'Callaghan e returned upon request.	Client: IGSL Limited	